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Abbreviations

ASA Adaptive simulated annealing
SA Simulated annealing
SQ Simulated quenching
VFSR Very fast simulated reannealing

Definition

Very fast simulated reannealing (VFSR) is an improved ver-
sion of simulated annealing (SA). The latter is a global opti-
mization method suitable for complex, non-convex problems.
It aims to optimize an objective function ℋ(x), with respect
to the D-dimensional parameter vector x¼ (x1, . . .xD)

⊤. Sim-
ulated annealing relies on randomMetropolis sampling of the
parameter space which mimics the physical annealing process
of materials. The annealing algorithm treats ℋ(x) as a ficti-
tious energy function. The algorithm proposes moves which
change the current state x, seeking for the optimum state. The
proposed states are controlled by an internal parameter which
plays the role of temperature and controls the acceptance rate
of the proposed states.

Very fast simulated reannealing employs a fast temperature
reduction schedule in combination with periodic resetting of
the annealing temperature to higher values. In addition, it
allows different temperatures for different parameters, and
an adaptive mechanism which tunes temperatures to the sen-
sitivities of the objective function with respect to each param-
eter. These improvements allow fast convergence of the
algorithm to the global optimum. For reasons of conciseness

and without loss of generality, it is assumed in the following
that the optimization problem refers to theminimization of the
objective function ℋ(x).

Overview

Annealing is a physical process which involves heat treatment
and is used in metallurgy to produce materials (e.g., steel)
with improved mechanical properties. It was presumably
crucial in the manufacturing of Damascus steel swords
which were famous in antiquity for their toughness, sharp-
ness, and strength. The well-kept secrets of Damascus sword-
making were lost in time as the interest in swords as weapons
waned. However, their legend survived in popular culture,
inspiring the references to “Valyrian steel” in the popular
Game of Thrones saga. The secrets of the long-lost art were
presumably re-discovered in 1981 by Oleg D. Sherby and
JeffreyWadsworth at Stanford University. A key factor for the
effectiveness of annealing is the heating process which
enables the material to escape metastable atomic configura-
tions (corresponding to local optima of the energy) and to find
the most stable configuration that corresponds to the global
minimum of the energy.

Simulated annealing (SA) is a stochastic optimization
algorithm developed by Scott Kirkpatrick and co-workers. It
uses randomness in the search for the global minimum of
ℋ(x). The randomness is introduced through (i) a proposal
distribution which generates new proposal states xnew of the
parameter vector and (ii) through probabilistic decisions
whether to accept or reject the proposal states. In contrast, in
deterministic optimization methods, every move is fully
determined from the current state and the properties of the
objective function.

Simulated annealing belongs in a class of models inspired
by physical or biological processes; these algorithms are
known as meta-heuristics (see Ingber (2012) and references
therein.) Physical annealing involves a heat treatment process
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which in SA is simulated using the Metropolis Monte Carlo
algorithm (Metropolis et al. 1953). At every iteration of the
SA algorithm, a random solution (state) xnew is generated for
the parameters by local perturbation of the current state xcur.
The proposed state is accepted and becomes the new current
state according to an acceptance probability; the latter
depends on the value of ℋ(xnew) compared to ℋ(xcur) and
an internal SA “temperature” variable T. The new state is
accepted if the proposal lowers the objective function. On
the other hand, even states xnew such thatℋ(xnew)>ℋ(xcur)
are assigned a non-zero acceptance probability which is
higher for higher temperatures.

The SA temperature is initially set to a problem-specific,
user-defined high value which allows higher acceptance rates
for sub-optimal states. This choice helps the algorithm to
effectively explore the parameter space because it allows
escaping from local minima of the objective function. The
temperature is then gradually lowered in order to “freeze” the
system in the minimum energy state. The function T(k), where
k is an integer index, describes the evolution of temperature as
a function of the “annealing time” k and defines the SA
cooling schedule. This should be carefully designed to allow
convergence of the algorithm to the global minimum (Geman
and Geman 1984; Salamon et al. 2002).

SA can be applied to objective functions with arbitrary
nonlinearities, discontinuities, and noise. It does not require
the evaluation of derivatives of the objective function, and
thus it does not get stuck in local minima. In addition, it can
handle arbitrary boundary conditions and constraints imposed
on the objective function. On the other hand, SA requires
tuning various parameters, and the quality of the solutions
practically achieved by SA depends on the computational
time spent. SA provides a statistical guarantee for finding
the (global) optimal solution, provided the correct combina-
tion of state proposal (generating) distribution and cooling
schedule are used (Ingber 2012). The convergence of the
algorithm is based on the weak ergodic property of SA
which ensures that almost every possible state of the system
is visited. Achieving the statistical guarantee can in practice
significantly slow down classical SA, since a very gradual
cooling schedule is required. To reduce the computational
time, often a fast temperature reduction schedule is applied,
i.e., T(k þ 1) ¼ cT(k), where 0 < c < 1, which amounts to
simulated quenching (SQ) of the temperature. However, this
exponential cooling schedule does not guarantee convergence
to the global optimum.

Very fast simulated reannealing (VFSR) is also known as
adaptive simulated annealing (ASA) (Ingber 1989, 2012).
ASA is the currently preferred term, while VFSR was used
initially to emphasize the fast convergence of the method
compared to the standard Boltzmann annealing approach.
ASA employs a generating probability distribution for pro-
posal states which allows an optimal cooling schedule. This

setup enables the algorithm to explore efficiently the param-
eter space. Reannealing refers to a periodical resetting of the
temperature to higher (than the current) value after a number
of proposal states have been accepted. Then, the search begins
again at the higher temperature. This strategy helps the algo-
rithm to avoid getting trapped at local minima. Finally, ASA
allows for different temperatures in each direction of the
parameter space. The parameter temperatures determine the
width of the generating distribution for each parameter, thus
enabling the cooling schedule to be adapted according to the
sensitivity of the objective function in each direction. ASA
maintains SA’s statistical guarantee of finding the global
minimum for a given objective function, but it also features
significantly improved convergence speed. It has been dem-
onstrated that ASA is competitive with respect to other non-
gradient-based global optimization methods such as genetic
algorithms and Taboo search (Chen and Luk 1999; Ingber
2012).

Methodology

The SA algorithm is a method for global – possibly
constrained – optimization of general, nonlinear, real-valued
objective functions ℋ(x) where x � w � ℝD is a vector of
parameters that takes values in the space w:

x� ¼ argmin
x� w

ℋ xð Þ, potenially with constraints on x:

The standard SA algorithm is based on the Markov chain
Monte Carlo method (Geman and Geman 1984). It involves
homogeneous Markov chains of finite length which are gen-
erated at progressively lower temperatures. The following
parameters should thus be specified: (i) A sufficiently high
initial temperature T0; (ii) a final “freezing” temperature Tf
(alternatively a different stopping criterion); (iii) the length of
the Markov chains; (iv) the procedure for generating a pro-
posal state xnew “neighboring” the current state xcur; (v) the
acceptance criterion which determines if the proposal state
xnew is admitted; and (vi) a rule for temperature reduction
(annealing schedule).

Boltzmann Simulated Annealing

The SA algorithm is initialized with a guess for the parameter
vector x0. The simulation proceeds by iteratively proposing
new states xnew based on the Metropolis algorithm
(Metropolis et al. 1953). These proposal states are generated
by perturbing the current state xcur. For example, in
Boltzmann annealing, this can be done by drawing the pro-
posal state xnew from the proposal distribution
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g xnewjxcurð Þ ¼ 1

2pTð ÞD=2
exp � xnew � xcurk k2=2T

h i
:

For every proposed move, the difference Δℋ ¼
ℋ(xnew) � ℋ(xcur) between the current state, xcur, and
the proposed state, xnew, is evaluated. If Δℋ < 0, the
proposed state is accepted as the current state. On the
other hand, if Δℋ > 0, the acceptance probability is
given by the exponential expression Pacc ¼ 1/[1 þ
exp Δℋ/T] (Salamon et al. 2002; Ingber 2012). The deci-
sion whether to accept xnew is implemented by generating a
random number r~U(0, 1) from the uniform distribution
between 0 and 1; if r � Pacc, the proposed state is accepted
(xcur is updated to xnew), otherwise the present state is
retained as the current state.

The above procedure is repeated a number of times before
the temperature is lowered. The acceptance rate is equal to
the percentage of proposal states that are accepted. The initial
temperature is selected to allow high acceptance rate (e.g.,
≈80%) so that the algorithm can move between different local
optima. The temperature reduction is determined by the
annealing schedule which is a key factor for the performance
of the SA algorithm.

The annealing schedule depends on the form of the gener-
ating function used: to ensure that the global minimum of
ℋ(x) is reached, it must be guaranteed that all states x � w
can be visited an infinite number of times during the annealing
process. In the case of Boltzmann annealing, this condition
requires a cooling schedule no faster than logarithmic, i.e.,
Tk ¼ T0 ln k0/ ln k, where kmax � k � k0. The integer index
k counts the simulation annealing time and k0 > 1 is an
arbitrary initial counter value (Ingber 2012). The final tem-
perature, Tkmax , should be low enough to trap the objective
function in the global optimum state.

Fast (Cauchy) Simulated Annealing

Boltzmann SA requires a slow temperature reduction sched-
ule as determined by the logarithm function. In practical
applications, an exponential schedule Tk þ 1 ¼ cTk where
0 < c < 1 is often followed. However, this fast temperature
reduction enforces simulated quenching which drives the
system too fast toward the final temperature. The exponential
annealing schedule offers computational gains, but it does not
fulfill the requirement of weak ergodicity (infinite number of
visits to each state). Hence, it does not guarantee convergence
of SA to the global minimum.

A fast annealing schedule which lowers the temperature
according to Tk ¼ T0/k is suitable for the Cauchy generating
distribution:

g xnewjxcurð Þ ¼ T

xnew � xcurk k2 þ T2
� � Dþ1ð Þ=2 :

Fast cooling works in this case due to the “heavy tail” of the
Cauchy distribution which carries more weight in the tail than
the Gaussian distribution used in Boltzmann SA (Ingber 2012;
Salamon et al. 2002). The resulting higher probability density for
proposal states considerably different than the current state
allows the algorithm to visit efficiently all the probable states
in the parameter space.

Very Fast Simulated Reannealing

ASA includes three main ingredients similar to classical
annealing: the generating distribution of proposal states, the
acceptance probability, and the annealing schedule. ASA uses
an acceptance temperature Tacc(ka) which controls the accep-
tance rate of proposed moves and a set of D temperatures
Ti kið Þf gDi¼1 which control the width of the generating distri-

bution for each parameter individually.
In addition to these three ingredients, ASA includes a

reannealing scheme which rescales all the temperatures after a
certain number of steps so that they adapt to the current state of
ℋ(x). Reannealing adjusts the rate of change of the annealing
schedule independently for each parameter. This helps the algo-
rithm adapt to changing sensitivities of the objective function as
it explores the parameter space, encountering points
(in D-dimensional space) with very different local geometry,
where ℋ may change rapidly with respect to some parameters
but considerably more slowly with respect to others. The mains
steps of ASA are outlined in the text below and in Algorithm 1.

Generation of proposal states: If the parameters xi are
constrained within [Ai, Bi], where Ai and Bi are, respectively,
the lower and upper bounds, the ASA proposal states are
generated by means of the following steps (Ingber 1989;
Chen and Luk 1999; Ingber 2012):

xnew ¼ xcur þ Dx, ð1aÞ

Dxi ¼ yi Bi � Aið Þ, i ¼ 1, . . . ,D, ð1bÞ

yi ¼ sign ui � 1

2

� �
Ti kið Þ 1þ 1

Ti kið Þ
� �j2ui�1j

� 1

" #
ð1cÞ

where ui � U 0, 1½ �, ð1dÞ

is a random variable uniformly distributed between zero and
one. Consequently, the random variable yi is centered around
zero and takes values in the interval [�1, 1]. The integer
indices ki are used to count time. Certain values of yi can
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yield proposed parameters outside the range [Ai, Bi]; these
values should be discarded (Ingber 1989). Lower values of
temperature force yi to concentrate around zero, while high
temperature values lead to an almost uniform distribution of yi
between �1 and 1.

Acceptance probability: The acceptance probability of a
proposed state is given by (Chen and Luk 1999)

Pacc ¼ 1

1þ eDℋ=Tacc kað Þ : ð2Þ

In Eqs. (1) and (2), the set of integer indices kif gDi¼1 [ kaf g
represents different annealing times. ASA uses one time
index per parameter, so that the reannealing process can adjust
the annealing time differently for each parameter. This multi-
dimensional annealing schedule enables adaptation of the
proposal states to different sensitivities of ℋ(x) with respect
to the parameters xi, i ¼ 1, . . ., D.

Reannealing: Every time a number Nacc of proposal states
have been accepted, reannealing is performed. This proce-
dure adjusts the annealing temperatures and times to the local
geometry of the parameter space. The sensitivities sif gDi¼1 are
calculated as follows:

si ¼ @ℋ exð Þ
@xi

����
���� 	 ℋ exþ abeið Þ �ℋ exð Þ

a

����
����, i ¼ 1, . . . ,D,

ð3Þ

where ex is the current optimal parameter vector, a is a small
increment, and bei is a D-dimensional unit vector in the i-th
direction of parameter space, i.e., beif gk ¼ di,k (δi, k¼ 1 for i¼
k and δi, k ¼ 0 for i 6¼ k being the Kronecker delta).

Reannealing adjusts the temperatures and annealing times
as follows ( implies assignment of the value on the right
side of to the variable appearing on the left side)

Ti kið Þ  smax

si
Ti kið Þ, smax ¼ max

i¼1, ...,D
si, ð4aÞ

ki  1

c
log

Ti 0ð Þ
Ti kið Þ

� �� �D
, i ¼ 1, . . . ,D, ð4bÞ

where c> 0 is a user-defined parameter that adjusts the rate of
reannealing and Ti(0) is usually set to unity (Chen and Luk
1999).

Similarly, the acceptance temperature is rescaled
according to

Input: Initialize: x0 ∈ X , Tacc(0) ← H(x0) , ki ← 1 , ka ← 1 , xcur ← x0 ,
Ti(0) ← 1, n ← 0, N ← 0

1 while termination condition is not met do Annealing loop
2 Generate proposal state xnew using Eq. (1) ;
3 N ← N + 1 (increase generated states counter) ;
4 if H(xnew) < H(xcur) then Update current state
5 xcur ← xnew; n ← n + 1 (increase accepted states counter)
6 else

7 Calculate acceptance probability Pacc from Eq. (2) ;
8 if Pacc > r ∼ U(0, 1) then Update current state
9 xcur ← xnew; n ← n + 1 (increase accepted states counter)

10 end

11 end

12 if n > Nacc then

13 Reannealing based on Eqs. (3)-(5) ;
14 n ← 0 (reset accepted states counter)

15 else

16 Go to Step 2
17 end

18 if N > Ns then

19 Annealing based on Eqs. (6) ;
20 N ← 0 (reset generated states counter)

21 end

22 end

Very Fast Simulated
Reannealing,
Algorithm 1 ASA main steps.
The integers n and N count the
accepted and generated states,
respectively. Ns: # proposed states
between annealing steps. Nacc: #
accepted proposals between
reannealing steps.
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Tacc kað Þ  ℋ exð Þ, Tacc 0ð Þ  ℋ xað Þ, ð5aÞ

ka  1

c
log

Tacc 0ð Þ
Tacc kað Þ

� �� �D
, ð5bÞ

where xa is the last accepted state.
The reannealing procedure enables ASA to decrease the

temperatures Ti along the high-sensitivity directions ofℋ(x),
thus allowing smaller steps in these directions, and to increase
Ti along the low-sensitivity directions, thus allowing larger
jumps.

Annealing: After a number of steps Ns have been com-
pleted, the annealing procedure takes place. The annealing
times increase by one, and the annealing temperatures are
modified according to Eq. (6). The annealing schedules for
the temperature parameters follow the stretched exponential
expression

Tacc kað Þ ¼ Tacc 0ð Þ exp �ck1=Da

� �
,

Ti kið Þ ¼ Ti 0ð Þ exp �ck1=Di

� �
, i ¼ 1, . . . ,D,

ð6Þ

where Ti(ki) is the current temperature for the i-th parameter
(Ingber 1989).

Termination: The above operations are repeated until the
algorithm terminates. Different termination criteria can be
used in ASA depending on the available computational
resources and a priori knowledge ofℋ. Such criteria include
the following: (i) an average change ofℋ(x) (over a number
of accepted proposal states) lower than a specified tolerance;
(ii) exceedance of a maximum number of iterations
(generated proposal states); (iii) exceedance of a maximum
number (usually proportional to D) of ℋ evaluations;
(iv) exceedance of a maximum computational running time;
and (v) attainment of a certain target minimum value for ℋ.

Initialization:An initial value, Tacc(0), should be assigned
to the acceptance parameter. One possible choice it to set
Tacc(0) ¼ ℋ(x0) where x0 is the random initial parameter
vector (Chen and Luk 1999). A more flexible approach
matches Tacc(0) with a selected acceptance probability, e.g.,
Pacc¼ 0.25 (Iglesias-Marzoa et al. 2015). The optimal values
of Ns and Nacc do not seem to depend crucially on the specific
problem (Chen and Luk 1999). Often an adequate choice for
Nacc is on the order of tens or hundreds and for Ns on the order
of hundreds or thousands. Higher values may be necessary to
adequately explore high-dimensional and topologically com-
plex parameter spaces. A good choice for the annealing rate
control parameter is c ≈ 1� 10. In general, higher values lead
to faster temperature convergence at the risk that the algo-
rithm may get stuck near a local minimum. Lower values lead
to slower temperature reduction and therefore increase the
computational time. Given ASA’s adaptive ability, the choices

for c, Nacc, Ns do not critically influence the algorithm’s
performance but they have an impact on the computational
time. For problems where ASA is used for the first time, it is a
good idea to experiment with different choices (Iglesias-
Marzoa et al. 2015).

Applications

An introduction to SA for spatial data applications is found in
Hristopulos (2020). Geostatistical applications are reviewed
in Pyrcz and Deutsch (2014). An informative review of ASA
(VFSR) is given in Ingber (2012), while a mathematical
treatment of SA is presented in Salamon et al. (2002). ASA
has been successfully used for geophysical inversion (Sen and
Stoffa 1996). The ASA algorithm and its application in var-
ious signal processing problems are reviewed in Chen and
Luk (1999). A detailed investigation of ASA’s application for
determining the radial velocities of binary star systems and
exoplanets is given in Iglesias-Marzoa et al. (2015).

Software Implementations
In Matlab, SA is implemented by means of the command
simulannealbnd. In R, the packages optimization and
optim_sa provide SA capabilities. In Python, this function-
ality can be found in the scipy.optimize module.
A C-language code for ASA (VFSR) developed by Lester
Ingber is available from his personal website.

Summary and Conclusions

ASA (VFSR) is a computationally efficient implementation
of the simulated annealing algorithm which employs a fast
(stretched-exponential) annealing schedule in combination
with a reannealing program which periodically resets the
temperature. ASA is an adaptive algorithm: both the
annealing and reannealing schedules take into account the
sensitivity of the objective function in different directions of
parameter space. Thanks to this adaptive ability, ASA is an
effective stochastic global optimization method which has
been successfully applied to complex, nonlinear objective
functions that may involve many local minima. Estimates of
parameter uncertainty can be obtained by means of the Fisher
matrix and Markov chain Monte Carlo methods.

ASA converges faster than the classical SA algorithm, it
allows each parameter to adapt individually to the local topol-
ogy of the objective function, and it involves a faster schedule
for temperature reduction (Iglesias-Marzoa et al. 2015). The
counterbalance of these advantages is that ASA is more
complex than the classical SA algorithm, it involves more
internal parameters, and the stretched exponential expression
for temperature reduction requires using double precision

Very Fast Simulated Reannealing 5



arithmetic and checking of the exponents to avoid numerical
problems. Overall, ASA has found several applications in the
geosciences (Sen and Stoffa 1996; Pyrcz and Deutsch 2014;
Hristopulos 2020).

Cross-References

▶Markov Chain Monte Carlo
▶Optimization Methods
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▶ Simulation
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