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Abbreviations

ETAS Epidemic type aftershock (model)
RG Renormalization group
SOC Self-organized criticality

Definition

The term universality originates in the theory of phase transi-
tions and self-organized criticality. Phase transitions represent
changes between different states of matter which occur when
a control parameter (e.g., temperature) attains a critical thresh-
old. The correlations of relevant system properties near a
phase transition do not fall off exponentially, and thus they
do not exhibit characteristic length scales. In contrast, the
decay of the correlations follows power-law functions
characterized by respective critical exponents. The theory of
self-organized criticality posits that certain systems (e.g.,
sandpiles, avalanches, and geological faults in seismogenous
zones) are close to a critical threshold without tuning a control
parameter such as temperature. The term “universality” indi-
cates that phase transitions which occur in different systems
are described by the same set of critical exponents, if they
share certain geometric and symmetry features; systems with
the same values of critical exponents belong in the same
universality class (Kadanoff 2000). In a broader sense, uni-
versality refers to empirical laws that have global validity,
e.g., Gutenberg-Richter’s law which relates the frequency and
intensity of earthquakes. The exponent of Gutenberg-
Richter’s law surprisingly takes values close to one regardless

of geographical location, geological factors, and seismic
history.

Overview

The term universality appears in the theories of phase transi-
tions and self-organized criticality (Bak 2013; Kadanoff
2000). The main feature of systems close to a phase transition
is that their response functions lack characteristic length
scales. Instead, the correlations in such systems decay as
power laws, i.e., scale-free functions determined by respec-
tive power-law exponents. The concept of universality posits
that systems which are quite different in their microscopic
details can exhibit identical, i.e., universal, macroscopic
behavior. More specifically, universality refers to the fact
that the power-law exponents, which describe the macro-
scopic response of different critical systems belonging in the
same universality class, take identical values.

The emergence of universality is often justified in terms of
the renormalization group (RG) theory introduced by Wilson
(1971). RG provides a systematic mathematical framework
for predicting the behavior of physical systems (or idealized
mathematical models) under a sequence of coarse-graining
transformations. These progressively increase the length scale
of observation (coarse-graining), while the short-scale details
are effaced; at the same time, the impact of coarse-graining on
the system parameters is calculated, and their values are
accordingly adjusted. Under repeated RG steps, the system
“flows” toward limiting states which are known as fixed
points. The defining feature of the latter is that a system
remains invariant under further coarse-graining transforma-
tions at a fixed point.

Phase transitions often involve a jump between a less
ordered and a more ordered state. As the transition threshold
is approached from the side of the less ordered state, the
system is attracted toward a nontrivial fixed point which
determines the properties of the more ordered state and the
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values of its characteristic critical exponents. A universality
class encompasses all the models that converge to the same
fixed point under application of the RG procedure. Hence, in a
broader sense, the term universality refers to the fact that
identical macroscopic physical laws apply to systems which
may vary in their microscopic details. For example, the laws
of thermodynamics do not depend on the details of atomic
interactions, the statistical properties of turbulence in the
inertial range are independent of the dissipation mechanisms,
and the effective permeability of statistically isotropic random
media is insensitive to the exact form of the local permeability
correlations. In this sense, universality is a main reason for the
success of the scientific approach, since it enables a general
understanding of natural phenomena based on a few funda-
mental physical principles.

More specifically, in the context of geosciences, the term
universality is used to imply the global validity of an empir-
ical law across different geographical areas and times. For
example, the Gutenberg-Richter law of seismicity is consid-
ered a universal law since its validity has been confirmed by
countless observations and analysis of seismic catalogs
worldwide. The exponent of Gutenberg-Richter’s law takes
a value close to one, although the exact value may not be
universal. Note that strictly speaking, the term “universality”
implies not only the same behavior (i.e., power-law), but
more importantly also common critical (power-law) expo-
nents for different systems that belong in the same universal-
ity class.

The concept of universality is also linked with fractal
geometry. The fractal approach was developed and popular-
ized by Benoit Mandelbrot (e.g., as described in his book The
Fractal Geometry of Nature). Fractal patterns consist of self-
similar structures which lack characteristic length scales. For
example, a fractal object of radius r has surface area S(r) ~ rα

where α 6¼ 2 is a noninteger (fractal) exponent. In phase
transitions, fractal patterns (e.g., clusters of the ordered
phase) emerge in systems which are close to the critical
state. Fractal patterns in systems that belong in the same
universality class share the same fractal exponents.

All notions of universality discussed above have applica-
tions in the geosciences. Given the wide range of applications
and space limitations, it is not possible to cite important early
papers by Leo Kadanoff and Per Bak. The interested readers
can find more information about these works in the books by
Kadanoff (2000) and Bak (2013).

Universality in Phase Transitions

Phase transitions are mechanisms that enable changes
between different states of matter, e.g., water, vapor, and
ice. Thus, phase transitions play a prominent role in the
water cycle of the Earth. There are many types of phase

transitions. Some are controlled by temperature
(i.e., thermodynamic transitions), while others by the geom-
etry of the medium in which the process takes place
(i.e., geometrical transitions). An example in the first class is
the superconducting transition: Metals and ceramic oxides
start to conduct electricity without any resistance if the tem-
perature is lowered below a certain critical threshold. An
example in the second class is percolation: A random porous
medium is permeable to fluids if its porosity exceeds a critical
threshold. Percolation is key to the production of an aromatic
cup of filtered coffee as well as to the infiltration of rainwater
into the ground.

Phase transitions are classified as first order and second
order. In first-order transitions, the change of state is accom-
panied by the absorption or release of latent heat, which
changes discontinuously the thermodynamic free energy of
the system. This leads to a discontinuity in the first derivative
of the free energy with respect to a thermodynamic variable
(hence the term “first-order”). Typical examples include the
condensation of vapor into water droplets (which involves
latent heat release) and the melting of ice (mediated by latent
heat absorption). In second-order phase transitions, on the
other hand, the free energy changes continuously. The dis-
continuity appears in the susceptibility which is the second-
order derivative of the free energy. A typical example is the
transition between paramagnetism and ferromagnetism in
magnetic materials that takes place at the Curie point. The
magnetization of the material acts as the order parameter: It is
zero in the paramagnetic phase and takes a finite value in the
ferromagnetic state. Similarly, order parameters are defined
for other second-order phase transitions (Kadanoff 2000).

Second-order phase transitions are characterized by a set
of critical exponents that determine how relevant properties
scale near the transition point. For example, the exponent v
describes the divergence of the fluctuations’ correlation
length, i.e., x~|T � Tc|

�v, where T is the temperature, Tc is
the critical temperature, and x is the correlation length. The
exponent � describes the power-law decay of the correlations
with distance at the transition point, i.e., C(r)~r�d þ 2 � �. The
exponents α, β, γ, and δ describe the dependence of: (i) the
specific heat c~|T�Tc|

�α, (ii) the order parameterf~|T�Tc|
β,

(iii) the susceptibility of the order parameter to an external
field h, i.e., df/dh~|T � Tc|

�γ, and (iv) the dependence of the
external field on the order parameter h~fδ. The critical expo-
nents depend on the dimensionality of the system and the
symmetry of the order parameter, but they may be indepen-
dent of other details (e.g., lattice structure).

Percolation, Fractals, and Multifractals

Percolation is a geometric phase transition which takes place
as a connected (e.g., permeable) structure grows in a random
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medium until it spans the entire extent of the medium. For
example, this happens on a lattice system as the proportion of
connected sites (e.g., the porosity) approaches a critical
threshold. There exist different percolation models which
include site, bond, and continuum percolation (Isichenko
1992). Percolation can be used as a mathematical model for
disordered media including heterogeneous geological porous
media. The geometric properties of percolation can be applied
to analyze transport in such media. Hence, percolation is an
important model for the study of subsurface flow and con-
taminant transport, especially in highly heterogeneous and
fractured soils.

Similarly to other phase transitions, percolation involves a
critical threshold pc. This corresponds to the occupation prob-
ability above which a fully connected network (medium)
becomes possible. The onset of percolation is marked by the
emergence of an incipient infinite cluster (essentially a “giant
component”) that extends across the medium. The order
parameter is given by the probability that a site belongs to
this giant component. Other variables describe geometrical
patterns of the percolation network (e.g., size of connected
clusters, average radius of clusters of given size, probability
that two sites at a given distance belong to the same cluster,
etc.). Near the percolation threshold, the behavior of such
variables is characterized by critical exponents. Universality
in the context of percolation means that the critical exponents
depend on the dimension of space in which the percolation
model is embedded, but they are independent of the lattice
structure and the percolation type (site and bond percolation
are in the same universality class).

The critical behavior of percolation implies a fractal geom-
etry for the network patterns (e.g., connected clusters) near
the percolation threshold. The fractality is bestowed by the
critical exponents which in general take noninteger values.
The concepts of universality and scaling have found applica-
tions in the geometry of naturally occurring fractal patterns
such as river networks, fault systems, coastlines, and moun-
tain topography (Isichenko 1992; Dodds and Rothman 2000).

An extended notion of universality is also used in the
theory of multifractals. These mathematical models find
applications in natural phenomena such as clouds, rain, fluid
turbulence, and weather (Lovejoy and Schertzer 2013).Multi-
fractals have more complex scaling relations than fractals.
The fractal exponents (dimensions) of multifractals depend
on location, and thus a spectrum of exponents is necessary to
fully describe multifractal behavior.

Self-Organized Criticality and Earthquakes

A notable application of the concept of universality is the
investigation of avalanches in sandpile models by Leo
Kadanoff and coworkers in a paper published in 1989

(c.f. Kadanoff 2000). They found different universality clas-
ses based on the microscopic rules used for the generation of
avalanches. Their work paved the way for the development of
the theory of self-organized criticality (SOC), which
describes systems that are always close to a critical threshold
without tuning of an external parameter (e.g., temperature).

Self-organized criticality has been proposed as a theoreti-
cal framework that among other things can explain the laws of
seismicity. In particular, the concept of self-organized criti-
cality provides a possible explanation for the Gutenberg-
Richter law which connects the frequency and magnitude of
earthquake events (Bak 2013). The fact that earthquakes all
over the globe follow the Gutenberg-Richter law is seen as a
signature of universality. An influential paper by Olami et al.
(1992) argues that the Burridge-Knopoff spring-block model
used to simulate earthquakes exhibits self-organized critical-
ity but lacks detailed universality. This means that the expo-
nent of the Gutenberg-Richter law depends on the elastic
parameters of the model (Olami et al. 1992). Recent numer-
ical experiments and lab-generated quakes also show a depen-
dence of the Gutenberg-Richter exponent on the material
properties of the medium in which the events take place.

According to a different theoretical approach, the proba-
bility distribution of earthquake recurrence times follows a
universal law, provided that the time between earthquakes is
scaled by the local rate of seismic occurrence (Corral 2004).
However, this viewpoint is controversial; other researchers
argue in favor of an almost-universal law based on the epi-
demic type aftershock (ETAS) model of seismicity (e.g.,
Saichev and Sornette 2007).

Summary and Conclusions

The term universality appears in different theories of natural
phenomena (phase transitions, self-organized criticality, frac-
tals, and multifractals), and its meaning may differ in each
case. The general idea of universality is that certain “universal
properties” depend on a few “macroscopic” parameters but
are independent of the specific details. A common signature
of universality is the presence of power-law dependence,
often when a critical threshold is approached. The connection
between power-law functions and universality is reviewed in
Marković and Gros (2014). Overall, universality is a very
fruitful concept which allows studying seemingly disparate
systems in the same theoretical framework and has several
applications in the geosciences.
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