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Abbreviations

DFT Discrete Fourier Transform
DPSS Discrete Prolate Spheroidal Sequence
MTM Multitaper Method

Definition

The discrete prolate spheroidal sequences (DPSSs) are max-
imally concentrated in both the time and frequency domains.
This is a crucial property for applications in power spectrum
estimation. The DPSSs comprise sets of real-valued orthonor-
mal sequences (discrete functions) with the following prop-
erties: (i) They are limited within the spectral band [–W, W],
where W > 0. (ii) The total energy of the sequence (i.e., the
sum of the squares of the amplitudes) over a finite time
interval is maximized. The time-limited DPSSs, also known
as the Slepian sequences, are orthonormal sequences with the
following properties: (i) They are time-limited within a finite
time interval. (ii) They exhibit maximal spectral concentra-
tion in the frequency band [–W, W]. The DPSSs are parame-
trized in terms of the length N of the temporal sequence, the
bandwidth W, and the order k ¼ 0, 1, . . .N – 1 of the Slepian
sequence.

Overview

In Fourier analysis, it is known that functions cannot be fully
localized in both time and frequency. As an extreme example,

consider the cosine function cos(2π f0t) with frequency f0. Its
Fourier transform involves the sum of two Dirac delta func-
tions, δ(f � f0). The cosine is fully extended in time, but the
delta functions are completely localized at �f0. In less
extreme cases, functions that are concentrated (localized) in
either the time or frequency space are extended (delocalized)
in the other. This trade-off between localization in the direct
(space or time) versus the spectral domain is also evident in
Heisenberg’s uncertainty principle of quantum physics.

Since functions cannot be completely confined both in the
temporal and spectral domains, a fundamental problem is how
to optimally concentrate the energy of a signal in the time
(frequency) domain if the signal is spectrally (temporally)
confined. The optimal concentration problem was addressed
in a series of papers by the mathematicians Slepian, Pollack,
and Landau (Landau and Pollak 1961, 1962; Slepian and
Pollak 1961; Slepian 1978, 1983). These theoretical advances
established the framework for the development of powerful
spectral estimation methods (Thomson 1982; Percival and
Walden 1993). The DPSSs solve the maximal concentration
problem in the case of discrete functions (i.e., for time series).
The solution of the concentration problem for continuous
functions is provided by the so-called prolate spheroidal
wave functions (Slepian 1978). The DPSS development is
reviewed by Slepian (1983).

Methodology

Consider a finite-length discrete time sequence tn ¼ nδt,
n ¼ 0, 1, . . ., N – 1, where N > 1 and the time step is
δt > 0. In addition, let x(t) represent a square-summable
(finite-energy) signal, sampled at the times tn, i.e., xn ¼ x(tn),
n ¼ 0, . . ., N – 1. The discrete-time Fourier transform (DFT)
of the sequence is given by
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ex fð Þ ¼
XN�1

n¼0

exp �2piftnð Þxn: ð1Þ

TheDFT is defined over the frequency interval –fN< f� fN,
where fN ¼ fs/2 is the Nyquist frequency and fs ¼ 1/δt is the
sampling frequency.

Formulation of the Concentration Problem
The concentration problem consists of finding all the finite-
energy time sequences xnf gN�1

n¼0 which maximize the spectral
concentration ratio

l ¼
ÐW
�W ex fð Þj j2dfÐ f N
� f N

ex fð Þj j2df
, where 0 < W < f N: ð2Þ

The parameter l, 0 � l � 1, measures the ratio of the
energy contained within the spectral band [–W, W] over the
total energy. The DPSSs comprise N discrete functions,
denoted by u kð Þ

n W,Nð Þ, k ¼ 0, 1, . . ., N – 1, that maximize l
and are also orthogonal to each other. The DPSSs are the real-
valued solutions of the following set of equations (Slepian
1978)

XN�1

m¼0

sin 2pW n� mð Þ
p n� mð Þ u kð Þ

n W ,Nð Þ ¼ lk N ,Wð Þu kð Þ
n W ,Nð Þ,

n ¼ 0,1, . . . ,N � 1:

(3)

The above system is equivalent to the following eigen-
value problem:

Av kð Þ ¼ lkv kð Þ: ð4Þ

In Eq. (4), A is the prolate matrix with elements

An,m ¼ sin 2pW n� mð Þ
p n� mð Þ , n,m ¼ 0, . . . ,N � 1,

lkf gN�1
k¼0 is the set of N eigenvalues, and the DPSS vectors

v kð Þ ¼ u kð Þ
0 , . . . , u kð Þ

N�1

� �⊤
are the respective eigenvectors

(“⊤” denotes the transpose), which form the Slepian basis.
The eigenvalues lk represent the spectral concentration ratios
for the respective eigenvectors v(k).

For continuous functions of time, the concentration prob-
lem is solved by an integral equation whose eigenfunctions
are the discrete prolate spheroidal wavefunctions (Slepian
and Pollak 1961; Slepian 1978).

Properties of the Slepian Eigenvectors and Eigenvalues
The DPSSs possess certain useful mathematical properties
(Slepian 1983; Percival and Walden 1993; Lii and Rosenblatt
2008):

1. The eigenvalues are distinct, real-valued, and positive:
1 > l0 > l1 > . . .lN � 1 > 0. The positive eigenvalues
reflect the positive-definiteness of the prolate matrix A.

2. The eigenvectors v(k) are even or odd according to whether
k is even or odd.

3. The eigenvector v(k) has exactly k zeros in the open interval
(0, N – 1).

4. The eigenvectors that correspond to different eigenvalues
are mutually orthogonal, i.e., each eigenvector v(k) is
orthogonal to all eigenvectors v(l ), l ¼ 0, . . ., k – 1.

5. The eigenvalues lk exhibit clustering behavior: Slightly
fewer than N(W/fN) eigenvalues are very close to one,
slightly fewer than N(1 – W/fN) eigenvalues are very
close to zero, while the remaining (very few) eigenvalues
are not close to either one or zero (Lii and Rosenblatt
2008). Hence, the number N(W/fN) (which equals 2NW, if
δt¼ 1) is a rough estimate (upper bound) of the number of
significant eigenvalues.

6. The integer part of 2NW is an approximate estimate for the
dimension of the space of functions that are “essentially
concentrated” in both time and frequency.

The first five eigenvectors for two Slepian bases displayed
in Fig. 1 illustrate the above properties. The plot on the left-
hand side of Fig. 1 corresponds to N ¼ 256, NW ¼ 5, and
δt¼ 1. The five respective eigenvalues lk are all very close to
one. The plot on the right-hand side corresponds to N ¼ 512,
NW¼ 2.5, and δt¼ 1. The respective eigenvalues lk are given
by 1, 0.99984, 0.99622, 0.95213, and 0.71389. Note that
l0 appears as 1 because 1 – l0 ≈ 3 � 10�6.

Applications in Spectral Estimation

An important practical problem is the estimation of the power
spectrum (power spectral density) of a process based on a
finite set of observations (sample) of the process.

The following focuses on wide-sense stationary, ergodic
random processes Z(t), which are assumed to extend over the
infinite time domain, i.e., t � (�1, 1). The spectral density
S(f) of Z(t) is well-defined and coincides with the Fourier
transform of the autocorrelation function according to the
Bochner-Khinchin-Wiener theorem. The time series znf gN�1

n¼0 ,
where zn ¼ z(tn), represents a finite sample of Z(t) (“z” is used
herein to avoid confusion with maximally concentrated func-
tions denoted by “x”).
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Periodogram Estimator
The two-sided periodogram estimate bS fð Þ of the spectral
density based on znf gN�1

n¼0 is given by

bS fð Þ ¼ dt
N

XN�1

n¼0

zn exp �2piftnð Þ
�����

�����
2

, � f N < f � f N: ð5Þ

To obtain the one-sided estimate (for 0 � f � fN), bS fð Þ in
Eq. (5) is multiplied by two for all frequencies except for f¼ 0
and f ¼ fN.

An estimator is called consistent if its variance tends to
zero as N ! 1. Unfortunately, the periodogram bS fð Þ is not
consistent, because its standard deviation is as large as the
expectation (mean), even as the sample size N ! 1.

The periodogram also suffers from spectral leakage. This
occurs because the finite observation window implies that Z(t)
is multiplied by a boxcar kernel (rectangular time window)
which localizes the signal within the finite sampling interval.
Multiplication with the window function implies the convo-
lution of the Fourier transform ez fð Þ with that of the boxcar
kernel in the spectral domain; the convolution perturbs ez fð Þ
by mixing values at neighboring frequencies.

Welch’s Method
The method proposed by Welch reduces the variance of bS fð Þ
by dividing the sample into different segments which are
allowed to overlap. A modified periodogram (see below) is

estimated for each time segment, and the segment estimates
are averaged to generate the Welch estimate of the power
spectral density. The assumed stationarity of Z(t) ensures
that the modified periodograms represent approximately
uncorrelated estimates of S(f). Thus, averaging over different
segments reduces the variance of the Welch estimate.

The modified periodograms involve the multiplication of
the time series (signal) in each time segment with a window
function. The latter vanishes outside the specific segment,
peaks in the middle of this segment, and is symmetric around
the peak. Windows thus suppress the values of the time series
near the segments’ edges. Overlapping segments prevent loss
of information, since signal values near the edges of one
window are also near the center of neighboring windows. In
addition, windowing reduces potential inter-segment correla-
tions that could arise due to segment overlap. Various win-
dows with subtle differences that impact spectral leakage are
used in the literature, including the Slepian zero-order DPSS.
The Kaiser (also known as Kaiser–Bessel) window provides a
simple approximation of the Slepian window based on Bessel
functions.

Multitaper Method for Spectral Density Estimation
The multitaper method (MTM) was also developed to address
spectral leakage in power spectrum estimation (Thomson
1982; Percival and Walden 1993). In MTM, the DPSSs are
used to construct low-bias, statistically consistent spectral
estimators that reduce spectral leakage.
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The MTM is a nonparametric estimation method, because
it is data driven and does not need a parametric model of the
process. For example, the classical periodogram and Welch’s
methods are also nonparametric, while the maximum entropy
method is parametric (Percival and Walden 1993).

The variance reduction of the spectral estimates is
achieved in MTM by using a small set of mutually orthogonal
windows (tapers), while Welch’s modified periodogram uses
a single data taper. The optimal MTM tapers consist of DPSS
eigenvectors, which minimize spectral leakage by maximiz-
ing energy concentration in the main spectral lobe. Both the
mutual orthogonality and the optimal time-frequency concen-
tration are critical for the success of the multitaper technique.

The MTM estimate is obtained by averaging K modified
periodogram estimates based on a respective set of K Slepian
tapers. Averaging reduces the variance of the power spectrum.

Only the fraction of tapers ~2N W
fN

� �
that generate small

spectral leakage are used. Asymptotic properties for the bias
and variance ofMTM spectral density estimates are studied in
Lii and Rosenblatt (2008).

Let Sk(f) denote the modified periodogram obtained with
the k-th Slepian sequence, V(k):

Sk fð Þ ¼ dt
XN�1

n¼0

u kð Þ
n zn exp �2piftnð Þ

�����

�����
2

: ð6Þ

In the simplest MTM version, the power spectral density is
estimated by averaging the K modified periodograms:

SMTM fð Þ ¼ 1

K

XK�1

k¼0

Sk fð Þ: ð7Þ

Other MTM versions use taper-dependent weights wk

(Percival and Walden 1993):

SMTM fð Þ ¼
PK�1

k¼0 wkSk fð ÞPK�1
k¼0 wk

: ð8Þ

Both the MTM and Welch’s method average over approx-
imately uncorrelated estimates of the power spectral density.
However, the two approaches differ with respect to how they
decorrelate the modified periodograms. Welch’s method uses
different segments of the signal for each periodogram. MTM
uses the entire signal, but the decorrelation is enforced by the
orthogonality of the Slepian tapers.

Selection of the MTM Parameters
TheMTM involves two competing parameters: the number of
tapers K and the half-bandwidth W. In order to understand
their role, recall that DFT has a frequency resolution equal to

the Rayleigh frequency fR ¼ fs/N; this is the minimum
frequency difference that can be resolved by the DFT of a
finite-duration signal.

For MTM estimation, a large value of K is desirable to
reduce the estimate for the variance of the power spectrum.
However, in practice, only the first K ¼ N(W/fN) – 1 of the
DPSS eigenvectors provide negligible spectral leakage
(Slepian 1978; Thomson 1982; Ghil et al. 2002). Hence, if
p is the largest integer that does not exceed N(W/2fN), K is
bounded by K � 2p – 1. On the other hand, the frequency
resolution of the MTM is f 0R � pf R ¼ W . This implies a
trade-off between spectral resolution and variance reduction.
Optimal values for p and K thus depend on the length N of the
time series and the desired spectral resolution.

DPSS in the Geosciences
The Discrete Prolate Spheroidal Sequences find numerous
applications in the spectral estimation of climatic time series,
geochemical, paleoclimatic, oceanographic, stratigraphic,
and seismological data [Percival and Walden (1993), Ghil
et al. (2002) and references therein]. Extension to spherical
Slepian functions for spatial and spectral concentration prob-
lems on the sphere has applications in geodesy, geophysics,
and oceanography (Simons and Wang 2011).

Software Implementations
In MATLAB and R software, the DPSS is implemented by
means of functions called DPSS; multitaper power spectral
density estimation is implemented by means of the PMTM

function in MATLAB and the package MULTITAPER in R. In
Python, this functionality can be found in the SPECTRUM

module.

Summary or Conclusions

Discrete prolate spherical (Slepian) sequences provide a
mathematically elegant solution to the problem of time-
frequency concentration: They are limited within a specific
time (spectral) window and also maximize the energy content
within a finite spectral (time) window. Slepian sequences are
used as window functions in Welch’s modified periodogram
spectral estimation. The DPSSs are also an integral compo-
nent of the multitaper method of spectral estimation. The
MTM leads to considerable improvements over the classical
periodogram in terms of variance and spectral leakage
reduction.
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Cross-References

▶Discrete Fourier Transform
▶Maximum Entropy
▶ Power Spectral Density
▶ Spectral Analysis
▶ Stochastic Process
▶Time Series Analysis
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