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Abbreviations

MEM maximum entropy method
MaxEnt maximum entropy
BME Bayesian Maximum entropy

Definition

The principle of maximum entropy states that the most suit-
able probability model for a given system maximizes the
Shannon entropy subject to the constraints imposed by the
data and – if available – other prior knowledge of the system.
The maximum entropy distribution is the most general prob-
ability distribution function conditionally on the constraints.
In the geosciences, the principle of maximum entropy is
mainly used in twoways: (1) in the maximum entropymethod
(MEM) for the parametric estimation of the power spectrum
and (2) for constructing joint probability models suitable for
spatial and spatiotemporal datasets.

Overview

The concept of entropywas introduced in thermodynamics by
the German physicist Rudolf Clausius in the nineteenth cen-
tury. Clausius used entropy to measure the thermal energy of a
machine per unit temperature which cannot be used to gener-
ate useful work. The Austrian physicist Ludwig Boltzmann

used entropy in statistical mechanics to quantify the random-
ness (disorder) of a system. The statistical mechanics defini-
tion of entropy reflects the number of microscopic
configurations which are accessible by the system. In the
twentieth century, the concept of entropy was used by the
American mathematician Claude Shannon (1948) to measure
the average information contained in signals. Shannon’s influ-
ential paper founded the field of information theory. Conse-
quently, the terms Shannon entropy and information entropy
are used to distinguish between the entropy content of signals
and the mechanistic notion of entropy used in thermodynam-
ics and statistical mechanics.

The connection between information theory and statistical
mechanics was investigated in two seminal papers by the
American physicist Edwin T. Jaynes (1957a, b). He showed
that the formulation of statistical mechanics can be derived
from the principle of maximum entropy without the need for
additional assumptions. The principle of maximum entropy is
instrumental in establishing this connection; it dictates that
given partial knowledge of the system, the least biased esti-
mate for the probability distribution maximizes Shannon
entropy under the specified constraints. According to Jaynes,
“Entropy maximization is not an application of a law of
physics, but merely a method of reasoning that ensures that
no arbitrary assumptions are made.” The work of Jaynes
opened the door for the application of MEM to various fields
of science and engineering that involved ill-posed problems
characterized by incomplete information. Notable application
areas include spectral analysis (Burg 1972), image restoration
(Skilling and Bryan 1984), geostatistics (Christakos 1990),
quantum mechanics, condensed matter physics, tomography,
crystallography, chemical spectroscopy, and astronomy,
among others (Skilling 2013).

© Springer Nature Switzerland AG 2021
B. S. Daya Sagar et al. (eds.), Encyclopedia of Mathematical Geosciences, Encyclopedia of Earth Sciences Series,
https://doi.org/10.1007/978-3-030-26050-7_196-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26050-7_196-1&domain=pdf
https://doi.org/10.1007/978-3-030-26050-7_196-1


Methodology

According to Laplace’s principle of indifference, if prior
knowledge regarding possible outcomes of an experiment is
unavailable, the uniform probability distribution is the most
impartial choice. MEM employs this principle by incorporat-
ing data-imposed constraints in the model inference process.
TheMEM probability model depends on the constraints used:
The MEM model for a nonnegative random variable with
known mean is the exponential distribution. If the constraints
include the mean and the variance, the Gaussian (normal)
distribution is obtained. In the case of multivariate and spa-
tially distributed processes, the MEM model constrained on
the mean and the covariance function is the joint Gaussian
distribution.

Notation

In the following, it is assumed that X ¼ (X1, . . ., Xn)
T

(T denotes the transpose) is an n-dimensional random vector
defined in a probability space (Ω, F , P ), where Ω is the
sample space, F is the sigma-algebra of events, and P is the
probability measure. The realizations x � ℝn of the random
vector X can take either discrete or continuous values.

The expectation of the function g(X) over the ensemble of
states x is denoted by  g Xð Þ½ �. The expectation involves the
joint probability mass function (PMF) p(x) if the random
variables Xi take discrete values or the joint probability den-
sity function (PDF) f (x) if the Xi are continuous. We use the
trace operator, Tr, as a unifying symbol to denote summation
(if the random variables Xi are discrete) or integration (if the Xi

are continuous) over all probable states x.

General Formulation

Assuming that the PMF p(x) (in the discrete case) or the PDF
f(x) (in the continuous case) is known, Shannon’s entropy can
be expressed as

S ¼ �
X

x�O

p xð Þ ln p xð Þ, discrete, ð1Þ

S ¼ �
ð

ℝ
dx1 . . .

ð

ℝ
dxn f xð Þ ln f xð Þ, continuous: ð2Þ

The entropy for both the discrete and continuous cases can
be expressed as S ¼ � ln f xð Þ½ �, where f(�) here stands for
the PMF in the discrete case and the PDF in the continuous
case. For the sake of brevity, in the following, we use f(�) to
denote the PDF or the PMF and refer to it as “probability
distribution.” We also use the term “summation” to denote

either summation (for discrete variables) or integration (for
continuous variables) over all possible states x.

Let gm xð Þf gMm¼1 represent a set ofM sampling functions, the
averages of which can be determined from the data
(observations). We will denote sample averages by means of
gm xð Þ. Such sampling averages can include the mean, variance,
covariance, higher-order moments, or more complicated func-
tions of the sample values. Then, according to the principle of
maximum entropy, the probability distribution should respect
the constraints (the symbol � denotes equivalence)

 gm xð Þ½ � � Trx gm xð Þf xð Þ½ � ¼ gm xð Þ, m ¼ 1, . . . ,M,

ð3Þ

where Trx[�] denotes the “summation” over all possible states
x. The above equations are supplemented by the normaliza-
tion constraint Trx f(x) ¼ 1 which ensures the proper normal-
ization of the probability distribution.

The maximum entropy (henceforward, MaxEnt ) distribu-
tion maximizes the entropy under the above constraints. This
implies a constrained optimization problem defined by means
of the following Lagrange functional

ℒ f½ � ¼ �Sþ
XM

m¼1

lm gm xð Þ � Trxgm xð Þf xð Þ
h i

þ l0 1� Trxf xð Þ½ �: ð4Þ

The minimization of ℒ[f] can be performed using the
calculus of variations to find the stationary point of the
Lagrange functional. At the stationary point, the functional
derivative δℒ/δf vanishes, i.e.,

0 ¼ dℒ
df

¼ ln f xð Þ þ 1�
XM

m¼1

lmgm xð Þ � l0:

The above equation leads to the MaxEnt probability
distribution

f xð Þ ¼ 1

Z
exp

XM

m¼1

lmgm xð Þ
" #

, ln Z ¼ 1� l0, ð5Þ

where the constant Z is the so-called partition function which
normalizes the MaxEnt distribution. Since f(x) is normalized
by construction, it follows from Eq. (5) that

Z ¼ Trx exp
XM

m¼1

lmgm xð Þ
" #

: ð6Þ

The implication of Eqs. (5) and (6) is that l0 depends on
the Lagrange multipliers lmf gMm¼1 . These need to be
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determined by solving the following system of M nonlinear
constraint equations

gm xð Þ ¼ Trxgm xð Þf xð Þ ¼ @Z
@lm

, m ¼ 1, . . . ,M: ð7Þ

In spatial and spatiotemporal problems, the constraints
involve joint moments of the field (Christakos 1990, 2000;
Hristopulos 2020). The constraints are expressed in terms of
real-space coordinates. In the case of time series analysis, it is
customary to express the MEM solution in the spectral
domain (see next section).

Spectral Analysis

MEM has found considerable success in geophysics as a
method for estimating the power spectrum of stationary ran-
dom processes (Burg 1972; Ulrych and Bishop 1975). In
spectral analysis, MEM is also known as all poles and auto-
regressive (AR) method.

For a time series with a constant time step δt, the MEM
power spectral density at frequency f is given by

P fð Þ ¼ c0

1þPM
m¼1cm exp ð2pi fmdtÞ�� ��2

, � f N � f � f N ,

ð8Þ

where fN ¼ 1/2δt is the Nyquist frequency (i.e., the maximum
frequency which can be resolved with the time step δt) and
cmf gMm¼0 are coefficients which need to be estimated from

the data.
The term “all-poles” method becomes obvious based on

Eq. (8), since P( f ) has poles in the complex plane. The poles
coincide with the zeros in the denominator of the fraction that
appears in the right-hand side of Eq. (8). The connection with
AR time series models of order m lies in the fact that the latter
share the spectral density given by Eq. (8). The order of the
AR model which is constructed based on MaxEnt is equal to
the maximum lag, mδt, for which the auto-covariance func-
tion can be reliably estimated based on the available data.

Applications

Maximum entropy has been extensively used in many disci-
plines of geoscience. Notable fields of application include
geophysics, seismology and hydrology, estimation of rainfall
variability and evapotranspiration, assessment of landslide
susceptibility, classification of remote sensing imagery, pre-
diction of categorical variables, investigations of mineral

potential prospectivity, and applications in land use and cli-
mate models.

The principle of maximum entropy is used in Bayesian
inference to obtain prior distributions (Skilling 2013). This
connection has been exploited in the Bayesian MaxEnt
(BME) framework for spatial and spatiotemporal model con-
struction and estimation (Christakos 1990, 2000). BME
allows incorporating prior physical knowledge of the spatial
or spatiotemporal process in the probability model. In spatial
estimation problems, the application of the method of maxi-
mum entropy assumes that the mean, covariance, and possi-
bly higher-order moments provide the spatial constraints for
random field models. A different approach proposes local
constraints that involve geometric properties, such as the
square of the gradient and the linearized curvature of the
random field (Hristopulos 2020). This approach leads to
spatial models with sparse precision matrix structure which
is computationally beneficial for the estimation and prediction
of large datasets. In recent years, various generalized entropy
functions have been proposed (e.g., Ŕenyi, Tsallis,
Kaniadakis entropies) for applications that involve long-
memory, non-ergodic, and non-Gaussian processes. In prin-
ciple, it is possible to build generalized MEM distributions
using extended notions of entropy (Hristopulos 2020). The
mathematical tractability and the application of such general-
ized maximum entropy principles in geoscience are open
research topics.

Summary or Conclusions

The notion of entropy is central in statistical mechanics and
information theory. Entropy provides a measure of the infor-
mation incorporated in a specific signal or dataset. The prin-
ciple of maximum entropy can be used to derive probability
distributions which possess the largest possible uncertainty
given the constraints imposed by the data. Equivalently, max-
imum entropy minimizes the amount of prior information
which is integrated into the probability distribution. Thus,
the maximum entropy probability distributions are unbiased
with respect to what is not known. The most prominent
applications of maximum entropy in geoscience include the
estimation of spectral density for stationary random processes
and the construction of joint probability models for spatial
and spatiotemporal datasets.

Cross-References

▶Discrete Fourier Transform
▶Higher-Order Spatial Stochastic Models
▶ Power Spectral Density
▶ Spatial Analysis
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▶ Spatial Statistics
▶ Spectral Analysis
▶ Stochastic Process
▶Time Series Analysis
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