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Abstract

This paper addresses the estimation of geometric anisotropy parameters from scat-

tered spatial data that are obtained from environmental surveillance networks. Es-

timates of geometric anisotropy improve the accuracy of spatial interpolation pro-

cedures that aim to generate smooth maps for visualization of the data and for

decision making purposes. The anisotropy parameters involve the orientation angle

of the principal anisotropy axes and the anisotropy ratio (i.e., the ratio of the prin-

cipal correlation lengths). The approach that we employ is based on the covariance

Hessian identity (CHI) method (Hristopulos, 2002; Chorti and Hristopulos, 2008),

which links the expectation of the first-order sample derivatives tensor with the Hes-

sian matrix of the covariance function (Swerling, 1962). In addition, we use image
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processing methods for the segmentation of the data set into clusters. The clusters

are defined based on sampling density variations and extreme values. Both real and

synthetic data are used to investigate the impact of CHI anisotropy estimation on

the results of spatial interpolation with ordinary kriging.

Key words: segmentation, clustering, spatial interpolation, clustered CHI,

non-parametric

1 Introduction

Geoinformatics is a science that aims at the development of information science

infrastructures for handling problems in geosciences, as well as geotechnical,

environmental and mining engineering. It involves the development and man-

agement of data structures and databases, the utilization of networking and

communication technologies for the transfer of the data, as well as the devel-

opment and application of statistical methodologies for the processing of the

data. Terrestrial environmental monitoring networks involve irregular distri-

bution of measurement stations in space. The local density and characteristics

of the networks are influenced by various factors, including national environ-

mental policies, terrain topography and proximity to urban centers. However,

in order to visualize the information provided by the network and to generate

risk maps that can be used for decision making, smooth maps of the monitored

process are required. To generate smooth maps, a spatial model is needed for
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interpolation of the measurements on regular map grids. Remote sensing mea-

surements are also affected by the problem of missing data (Rossi et al., 1994;

Foster and Evans, 2008). Geostatistical methods are important for the statis-

tical processing of the information provided by environmental networks, since

they permit characterization and quantification of spatial dependencies from

scattered data, and subsequently their use for spatial interpolation and map

generation.

An accurate spatial model should, among other things, incorporate estimates

of anisotropy. In addition, if the model is to be used with minimum used

involvement (e.g., in an automatic setting) such estimates should involve a

small number of free parameters. Such estimation methods would allow users

that are not expert geostatisticians to obtain working estimates of anisotropy.

Anisotropy appears in spatial data under at least two forms: trend anisotropy

or statistical anisotropy. Trend anisotropy is easily determined from the co-

efficients of the spatial regression model. Here we focus on the estimation

of statistical anisotropy, and in particular geometric anisotropy. Geometric

anisotropy implies that the covariance function of the monitored process has

different correlation lengths in different spatial directions. In two spatial di-

mensions, geometric anisotropy is determined from two parameters: the ori-

entation angle of the principal axes and the ratio of the correlation lengths

along the principal directions.

Estimation of the anisotropy parameters is typically based on empirical meth-

ods such as fitting of experimental directional variograms or on the rigorous

but computationally demanding maximum likelihood method. The recently

proposed Covariance Hessian Identity (CHI) or Covariance Tensor Identity

(CTI) method (Hristopulos, 2002; Chorti and Hristopulos, 2008) provides
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a computationally fast, non-parametric approach for the estimation of the

anisotropy parameters. The term non-parametric here refers to the fact that it

is not necessary to assume a parametric covariance model in order to determine

the anisotropy ratio and orientation angle. The caveat is that CHI assumes

a differentiable covariance model. A deterministic interpolation scheme (e.g.,

bilinear or bicubic, minimum curvature, Savitsky-Golay polynomial filtering)

is then used to approximate the sample derivatives of scattered data as de-

scribed in (Chorti and Hristopulos, 2008). Note that the anisotropy estimation

grid is not necessarily the same as the target map grid. The differentiability

assumption is not a significant restriction, even though only the Gaussian

covariance model is differentiable from the covariance functions traditionally

used in geostatistics. In fact, both the Matérn and the Spartan (Hristopu-

los, 2003; Hristopulos and Elogne, 2007) models provide families of covariance

functions with controllable differentiability properties.

The remainder of this manuscript is structured as follows: Section 2 briefly

describes how the data used in the case study are obtained. While the clus-

tered CHI method, presented afterwards, aims to provide a general tool for

anisotropy analysis, the presentation of the method significantly benefits by

focusing on a specific example. Section 3 proposes an approach for the applica-

tion of CHI to scattered data that require segmentation into different clusters

due to sampling density variations or to the presence of extreme values. In

section 4 we use the clustered CHI method to determine the anisotropy of the

radioactivity data set. We also compare the performance of spatial interpola-

tion with and without anisotropic correction using cross validation measures.

Finally, in Section 5 we present our conclusions. This paper extends the scope

of the CHI method for anisotropy parameter estimation by combining it with
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image segmentation techniques for clustering and by developing methods for

anisotropy averaging over different clusters.

2 Description of the Data

The data set involves scattered measurements of gamma dose rates (GDR)

over part of Europe. The GDR data were generated by the German Fed-

eral Office for Radiation Protection (Bundesamt für Strahlenschutz) in the

framework of the INTAMAP project (INTAMAP, 2009) and are described

in Deliverable 5.4. The sampling network is represented by the sites of the

European Radiological Exchange Platform (EURDEP). N = 3626 sampling

sites are used with their positions expressed in the INSPIRE coordinate sys-

tem (INSPIRE, 2009). GDR is measured in nanoSievert per hour (nSv/h). The

network involves both densely sampled areas (e.g., Germany and Austria) and

sparsely sampled ones (e.g. in South Europe).

Real background radioactivity measurements are combined with simulations

that include systematic errors, local peaks due to to washout effects caused by

heavy rainfall, single peaks due to lighting strikes, and areas of extreme values

resulting from the dispersion of a radioactive plume caused by a simulated

reactor accident in central Europe. The simulations are generated with the

RODOS system (Ehrhardt, 1997) using meteorological information from the

German weather service. The time of the accident was 23:40 on January 6,

2008. Forecasts of the plume dispersion were produced at +18h, +30h, +42h,

and +54h from the starting time, for an area of 2500× 2500 km2 centered at

the city of Offenbach. We used the +42h time slice for the spatial analysis.

The statistics of the data set are given in Table 1.
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Table 1
Statistics of the radioactivity data set used in the case study. The abbreviations
used are as follows: Xmin (minimum value), q1 (first quartile), q2 (median), mX

(mean value) q3 (third quartile), Xmax (maximum), σX (standard deviation), µX

(skewness), kX (kurtosis).

Xmin q1 q2 mX q3 Xmax σX µX kX

29.0 85.8 131.0 2442.0 3082.0 26990.0 4371.36 2.29 5.25

3 The Clustered CHI method for Anisotropy Estimation

Consider an environmental sensor network (e.g., radioactivity probes) contain-

ing N sampling points si = (xi, yi), i = 1, . . . , N, where (xi, yi) are the spatial

coordinates expressed in an equidistant projection system. The sampled pro-

cess to be mapped is denoted by X(s). We will assume that X(s) is modeled

by a spatial random field the realizations of which admit at least first-order

partial derivatives in two orthogonal directions. For jointly Gaussian spatial

random fields, this class includes fields with Gaussian covariance, or Matérn

covariance with smoothness index ν > 1, or Spartan random fields with finite

spectral cutoff kc < ∞. The CHI method assumes that the data are generated

from a stationary and normal (jointly Gaussian) or log-normal random field.

Mild deviations from normality can be handled using the Box-Cox transform.

Then, the anisotropy parameters can be estimated for the normalized field.

Often, the stationarity assumption is not supported by the data. Here, we

focus on deviations from stationarity due to extreme values. For example,

an accident releasing radioactivity in the environment generates a radioac-

tive plume whose statistical properties differ markedly from the background

radioactivity. In order to justify using the stationarity assumption, it is nec-

essary to consider separately subsets of the sampling network that contain a

large number (e.g., Ng > 50) of extreme values compared to the background.
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Thus, separate domains are defined that contain the “normal” and “extreme”

values respectively. Further, if the sampling density varies significantly over

a domain, the domain is partitioned into clusters of similar sampling density

(SSD) using standard segmentation methods from image processing (Gonzalez

and Woods, 2006). We define a different anisotropy estimation grid for each

cluster by tuning the grid step to the cluster sampling density, as discussed in

Section 3.1 below.

3.1 Segmentation of the Data Set

The segmentation procedure aims to divide the network of sensor points into

different groups based on three criteria: the first criterion removes all the

isolated and distant points from the sample. The second criterion requires

that areas containing a number of clustered “extreme values” be treated as a

separate group. Possibly, there may be more than one such groups. The third

criterion requires that the points in each group be separated into clusters based

on the local sampling density values.

3.1.1 Filtering of isolated and distant points

This step ensures that values which are not correlated with other points are

excluded from the geostatistical analysis. To implement this criterion, a rect-

angular box centered at the network’s centroid is defined. The extent of the

box in the directions x and y is set to ±4σx and ±4σy where σx, σy are the

standard deviations of the sample’s coordinate locations. Points that lie out-

side the boundary box and do not have a neighbour within a radius equal to

min(σx, σy) are removed. For the case study data, this criterion has the effect
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of removing mainly values from sensors on remote island locations, e.g., at

the Azores or stations in former European colonies. The application of this

filtering process is illustrated in Fig. 1.
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Fig. 1. Map of the sensor grid network. The distant and isolated points, as identified
by the filtering algorithm, are marked by circles.

3.1.2 Segregation into “normal” and “extreme” value domains

The second criterion defines a group of extreme values, henceforth called G2,

that exceed a process specific threshold. For the present case study, the thresh-

old is set at 250 nSv/h. The “extreme value” group includes the locations

affected by the spreading plume of a simulated radioactive release. The re-

maining sensor points form a group that contains “normal” values, henceforth

referred to as G1. In the case study, G1 involves points registering background
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radioactivity levels, as well as points with instrument malfunctions, spikes

generated by lightning, etc. (some such events are also included in G2). G1

contains around 2500 points. The third criterion is necessary in order to con-

struct meaningful anisotropy estimation grids, with a step that adapts to the

sampling density in each area. We show the result of the segregation procedure

on the pattern obtained at +42h after the simulated release in Fig. 2. Depend-

ing on the nature of the problem at hand, this segregation procedure may be

modified. For example, if it is known that the fluctuations should follow the

Gaussian distribution, one can filter out spikes due to instrument malfunctions

using the iterative algorithm proposed in (Hristopulos et al., 2007).
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Fig. 2. Segregation of the truncated sensor network into “normal value” (black) and
“extreme value” (red) domains.
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3.1.3 Domain partitioning into SSD clusters

Clustering of the network sensors based solely on the coordinates xi, yi can be

performed using various standard methods. Such choices include the Mixture

of Gaussians (McLachlan and Peel, 2000), which is based on the probability

density functions (PDF) of the xi and yi, the method of k-means (Gan et al.,

2007) which clusters the points according to the distances of xi and yi from

(iteratively defined) cluster centers, Support Vector Machines (Cristianini and

Shawe-Taylor, 2000), the method of k-median (Gan et al., 2007), Maximum

Entropy classifiers, and Orthogonal Forward Regression with leave-one-out

test score. In the case of the radioactivity monitoring network that we consider,

different sensors may report at different times, so the network grid varies with

time. We need to be able to cluster the sensors dynamically, without a-priory

information on the number of clusters. It also makes sense to define clusters

based not only on their geographical location, but also on the local sampling

density, which may vary across national borders. Hence, we follow a four-

step procedure. (1) We construct a sampling density function for the sensor

network. (2) We use edge detectors from image processing to identify closed

perimeters. (3) We identify different clusters and the sensor points that they

include. (4) We reject regions with very few sensors, and then assign the

remaining sensor locations to clusters according to an empirical criterion.

3.1.3.1 Sampling density function To implement the first step, we de-

fine a sampling density grid (SDG), which is in general different than the map

grid. The SDG has the same number, L = b
√

Nc, nodes per side and covers

the sensor network area. For example, for the data set studied, L = 50 for

the SDG in the domain G1. The SDG contains L2 rectangular cells. We then
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form a sampling density matrix (SDM), the value of which at each grid cell is

proportional to the number of sensor points enclosed by the cell. Each sensor

point is assigned the sampling density value of the corresponding SDG cell.

The spatial variation of the SDM in the domain G1 is shown in Fig. 3. The

gap between the two main peaks in the center is due to the fact that the points

in G2 are excluded.

xy
z

Sampling density matrix

Fig. 3. Map of the sampling density matrix over the “normal value” domain G1.

3.1.3.2 Edge detection Next, we determine potential cluster perimeters

based on the spatial variability of the SDM. Edge detection techniques are used

to determine the cluster perimeters (Gonzalez and Woods, 2006, Chap. 7). The

SDM is smoothed by an averaging 3 × 3 filter, and an 5 × 5 edge detection

logarithmic filter is passed over the grid to detect likely cluster perimeters.
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After identifying the candidate “edge” cells, closed perimeters are determined

by searching for sequentially linked edge cells. A cell is considered “linked” if

it possesses a neighbour inside a 3 × 3 neighbourhood centered at the cell’s

location.

Fig. 4. Identification of potential cluster perimeters for the “normal value” domain
(G1). The figure displays the cells of the SDG that lie on the identified perimeters.

3.1.3.3 Initial SSD cluster identification After all cells have been

searched, each closed perimeter is labeled and considered as a potential clus-

ter perimeter. The sensor points are then assigned to the cluster perimeter

that contains them, thus leading to an initial cluster assignment. Some points

are not assigned to clusters at this stage. The initial assignment of sampling

points to the enclosing cluster perimeters is shown in Fig. 5. Note that the

cluster perimeters are defined on nodes of the SDM grid, while the sampling
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sites do not in general coincide with the nodes of the grid.
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Fig. 5. Initial assignment of sampling sites (stars) in the “normal value” domain G1
to cluster perimeters. The centers of the SDG perimeter cells are denoted by cross
marks. Colored sampling points have been assigned at this stage to clusters, while
points marked by black circles are unassigned.

3.1.3.4 Final SSD cluster assignment Based on our experience, mean-

ingful SSD clusters for CHI anisotropy detection should contain at least 50

sensor points. Smaller clusters are rejected, and the sampling points inside

them, as well as unassigned sensor points, are assigned to a neighbouring, suf-

ficiently populated cluster. The assignment of rejected and unassigned points

is performed by optimizing a cost function that weighs SDM differences be-

tween the sensor point and the three closest neighbour clusters as well as

physical distances between the sensor point and the centroids of the clusters.
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The cost function for assigning point si to the cluster c is given by

φi;c =
di,c

max{di,1, . . . , di,K}
+ β

√∣∣∣ρi − 〈ρ〉c
∣∣∣√

max{〈ρ〉1, . . . , 〈ρ〉K}
, c = 1, . . . , K. (1)

In the above, di,c is Euclidean distance of the point si from the centroid of the

cluster c, K is the total number of clusters, ρi is the sampling density assigned

to si based on the (SDM) sample density matrix, and 〈ρ〉c is the average value

of the SDM in cluster c. The coefficient β is empirically determined. For the

case studies that we have considered β = 0.2 works well.

The scheme presented above ensures that points near a specific cluster’s cen-

troid are preferably assigned to that cluster, while points that are equally far

from all three clusters are assigned to the cluster that has a similar sampling

density. All sensor sites are finally assigned to an SSD cluster that includes

more than 50 sensor points, as shown in Fig. 6(a). The convex hulls of the fi-

nal clusters are shown in Fig. 6(b). The stars inside the convex hulls represent

the centroids of the initial clusters (before the reassignment). Note that the

cluster around Iceland has been rejected based on the minimum number of

points criterion, and its stations have been incorporated with the UK cluster.

We also note that the cost function (1) can lead to non-intuitive assignment

of sensor points in the case of elongated cluster shapes. For example, consider

two neighbouring clusters: one in containing the points marked as blue crosses

(mostly Poland) and the other containing the points marked as red circles

(Southeast Europe and Turkey) in Fig. 6(a). The first cluster contains one

point in Eastern Turkey that is clearly closer to the perimeter of the second

cluster. By taking a look at Fig. 5, one can distinguish a number of unassigned

sampling points along the eastern border of Turkey. These points are assigned

14



to clusters in the final SSD assignment stage. Due to the elongated shape of

the second cluster, the distance of the point in question from the centroid of

the first cluster is smaller than its distance from the centroid of the second

cluster. Such inconsistencies can be removed if the cost function is based on

the distance between each unassigned point and its nearest neighbour that

has been assigned to a non-rejected cluster in the initial SSD cluster identifi-

cation. However, this option leads to an increase of the computational time,

due to the calculations of near neighbour structures. Thus, we opted for the

simpler approach which is based on the distance from the cluster centroid.

This approach seems to provide overall reasonable cluster structures, and its

speed makes it suitable for automatic mapping purposes.
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(a) Final cluster structure.
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Fig. 6. Final assignment of sampling points in G1 to SSD clusters (a). Cluster
ownership is color coded. The “black” area in central Europe represents the domain
G2. Convex hulls of the final SSD clusters (b). The centroids of the initial clusters
are marked by stars.
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3.2 Anisotropy estimation

3.2.1 SSD Cluster estimates

The estimates of the anisotropy parameters (R, θ) in each cluster are based

on the CHI method (Chorti and Hristopulos, 2008). The angle θ represents

the angle between one of the principal axes, arbitrarily called M1, and the

horizontal axis of the coordinate system. In geography, it is preferred to define

the anisotropy orientation in terms of the complementary angle. R = ξ1/ξ2 is

the ratio of the correlation lengths along M1 and its orthogonal direction M2.

If Q̂i,j are sample-based estimates of the slope tensor of X(s), and qdiag = Q̂22

Q̂11
,

qoff = Q̂12

Q̂11
represent the diagonal and off-diagonal ratios, respectively, R̂ and

θ̂ are given by

θ̂ =
1

2
tan−1

(
2qoff

1− qdiag

)
, R̂2 = 1 +

1− qdiag

qdiag − (1 + qdiag) cos2 θ
. (2)

Equations (2) are valid if the random field is Gaussian or lognormal, second-

order stationary, and differentiable.

In each SSD cluster, the qdiag and qoff are estimated by means of finite dif-

ferences on the rectangular anisotropy estimation grid that covers the clus-

ter domain. The grid extends from xc;min to xc;max in the x−direction and

from yc;min to yc;max in the y−direction, where xc;min = min(x1, . . . , xnc),

xmax = max(x1, . . . , xnc), are respectively the smallest and largest values of

the x coordinates for all points in the cluster c (similarly for y). To avoid

introducing bias related to the shell shape, the grid cells are squares with side
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length equal to

αc = min(|xc;min − xc;max|, |yc;min − yc;max|)/
√

N.

The interpolation is conducted using a non-parametric, deterministic approach,

such as triangle-based linear or minimum curvature interpolation. This intro-

duces some bias in the anisotropy estimation, since the interpolation model

does not account for the anisotropy. However, the field generated on the

anisotropy estimation grid incorporates the anisotropy properties imparted

by the data. A detailed analysis of the impact of the interpolation method on

the anisotropy estimation is given by Chorti and Hristopulos (2008).

3.2.2 Coarse-grained domain estimates

Using individual cluster estimates of anisotropy to interpolate X(s) on the map

grid would require a smoothing filter, e.g., moving windows. Alternatively, one

can seek an average estimate of the anisotropy in the domains of “normal” and

“extreme” values. Given the nonlinearity of the expressions in (2), a simple

average of the cluster anisotropy parameters is not appropriate. Let us assume

that each domain involves Kg clusters (g = 1, 2), and that Q̂g;c
ij , i, j = 1, 2,

c = 1, . . . , Kg represent the estimates of the slope tensor for the c-th cluster

in the g-th domain. Anisotropy estimates are based on the weighted average,

Qg
ij, of the slope tensor:

Qg
ij =

∑Kg

c=1 wg;c Q̂g;c
ij∑Kg

c=1 wg;c

(3)

The weights wg;c are set equal to the area Ak enclosed by the convex hull of

each cluster.
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3.3 A Statistical Test for Isotropy

The anisotropy parameter estimates given by (2) are sample statistics and

thus exhibit sample-to-sample fluctuations. If the estimates indicate signifi-

cant anisotropy, this should be taken into account in the interpolation proce-

dure used to generate the map of the process. There are various ways in which

(R̂, θ̂) can be used. If the estimate of the spatial structure is based on the ex-

perimental variogram, (R̂, θ̂) can be used to rotate and rescale the coordinate

system to render the spatial dependence isotropic (Hristopulos, 2002; Chorti

and Hristopulos, 2008). Then, the omnidirectional variogram can be estimated

and modeled. Spatial interpolation should be performed in the transformed

coordinate system using the optimal isotropic variogram model. In this case

the transformed values of the map grid coordinates should be used. Alterna-

tively, (R̂, θ̂) can be used as initial guesses of the anisotropy parameters in a

maximum likelihood optimization procedure.

In both cases, it is advantageous to know whether the anisotropy of the data

is significant in order to incorporate it in the map grid interpolation. To this

end, a non-parametric joint probability density function has been developed

and its confidence regions have been calculated (Petrakis and Hristopulos,

2009). These can be used to test (a) if two sets of anisotropy parameters are

statistically different and (b) if the isotropy assumption can be rejected at a

given confidence level. We use the isotropy test to determine if it is necessary

to perform an isotropy restoring transformation (rotation and rescaling) of

the coordinates. For nearly isotropic data, this helps to reduce the computing

time of map generation without significant impact on the accuracy of the
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interpolation. More specifically, the isotropy hypothesis can not be rejected if

R̂2 ∈

nc − 2
√

(nc − rα)rα

nc − 2rα

,
nc + 2

√
(nc − rα)rα

nc − 2rα

 , (4)

where rα is a constant that depends on the desired confidence level: for a 95%

confidence level rα ' 6. In (4) nc ≥ 50 is the number of sampling points im-

plicated in the estimates: in the case of a single domain and a single cluster

nc = N = 1, while for a single domain with multiple clusters
∑K

c=1 nc = N .

The test is conservative (as shown by theoretical arguments and numerical

simulations), leading to wider confidence intervals than the true ones, due to

the underestimation of correlation effects. The accuracy of the test is compro-

mised for small data sets or sparsely sampled areas, due to poor estimation of

the anisotropy parameters in such cases.

4 Cross validation analysis of anisotropy estimates

4.1 Study design

We have conducted tests on single-cluster synthetic data and densely sampled

real data (not shown herein), which show that application of CHI improves

interpolation performance. In the context of the radioactivity case study, we

test the potential benefits of anisotropy estimation for mapping using a cross

validation approach. To generate cross validation measures 60 training set

realizations from the domains G1 and G2 are used. Each training set contains

2/3 of the total number of points, and the sampled points are replaced at

the end of each run. The remaining 1/3 of the points are used for validation
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purposes.

4.2 Spatial model parameter estimation

The reference prediction values are obtained using an isotropic variogram

model, estimated from the empirical variogram of the training set by means of

a weighted least squares (WLS) fit. To include anisotropy, (R, θ) are estimated

for the training set points in the domains G1 and G2. Bilinear interpolation,

implemented by means of the akima package, is used to obtain estimates of

the GDR on the anisotropy estimation grids. The GDR values thus obtained

for G1 and G2 are shown in Fig. 7.

Since G1 contains seven clusters, the anisotropy estimates are based on the

cluster average of the slope tensor as given by Eq. (3). For each training set

realization we test based on (4) if the isotropic hypothesis is supported, and

then an isotropy restoring coordinate transformation is used. Next, the range

and sill of the variogram are estimated in the isotropic coordinate system

using the R function automap (Hiemstra et al., 2009). For each training set the

optimal variogram is selected from among the exponential, Gaussian, spherical

and Matérn models. The estimates (R̂, θ̂) are then incorporated to obtain the

anisotropic variogram model.

4.3 Spatial interpolation and cross validation

The method of ordinary kriging (OK) is used for interpolation using the gstat

package (Pebesma, 2004). Validation measures compare the estimates with the

“true” values at the validation locations. The validation measures are obtained
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by calculating first the spatial average over the validation set followed by an

average over the realizations, e.g.,

ME =
1

M

M∑
j=1

1

Nv

Nv∑
i=1

[
X̂(sj

i )−X(sj
i )
]
,

where M = 60, Nv is the number of points in the validation set, X̂(sj
i ) de-

notes the ordinary kriging prediction at sj
i , and the latter represents the i−th

sampling point in the j−th realization.
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(a) Interpolated GDR on anisotropy
estimation grid in G1.
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(b) Interpolated GDR on anisotropy
estimation grid G2.

Fig. 7. Interpolated GDR fields used in the clustered CHI anisotropy estimation.
The range of values in G1 is 29.0 − 248.8 nSv/h, while in G2 it is 251.0 − 26992.5
nSv/h.

The cross validation results are reported in Table 2. The first row is obtained

using isotropic variogram models. The second row is obtained by estimating

the anisotropy parameters, performing an isotropy restoring transformation

(rotation and rescaling of coordinate axes), and then determining the vari-

ogram model. It is shown that incorporation of the anisotropy improves the

validation measures overall, except for the linear correlation coefficient. Of

course, to an extent the improvement is due to the fact that our anisotropy
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method handles separately the two domains G1 and G2. Note that reported

values of the mean absolute relative error are large. This is due mainly to over-

estimates of the dose rate in areas that are close to the plume but not in the

plume; the local absolute relative error is given by
[
X̂(sj

i )−X(sj
i )
]
/X(sj

i ),

and this becomes large if X̂(sj
i ) >> X(sj

i ) . In the isotropic model, this is

caused by prediction points outside the plume which are influenced by neigh-

boring sampling sites inside the plume. In the anisotropic case, this is due

to the false assignment of predictions points to G2 instead of G1. A typical

situation is illustrated in Fig. 8.

ARE−Isotropic
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(a) ARE using the isotropic variogram
model.

ARE−AnisotropicVariogram

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●

0
0.208
0.416
1.039
1.559
2.079
22.869
43.658
64.448
85.238
106.028
126.817
147.607
168.397
189.187

(b) ARE using the anisotropic variogram
model.

Fig. 8. Local average relative error (ARE) for one realization of the training and
validation sets.

4.4 Computation time

The computation time is 32 sec for ordinary kriging without anisotropy cor-

rection and 17 sec for ordinary kriging with the anisotropy correction. The

difference in computational time is due to numerical complexity of ordinary
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kriging, which scales as the third power of the number of sampling points,

and the fact that in the first case kriging uses all the sampling points. In the

second case, the training set is split into two domains (G1 and G2). There

is an additional cost for assigning the prediction points to either G1 or G2,

but interpolation in each domain now involves a smaller number of points.

Each prediction point is assigned to a group based on its nearest neighbour in

the training set. Nearest neighbours are determined using the computationally

efficient kd tree structures, which have a numerical complexity of N log2 N .

These were implemented using the ann function from the R package yaImpute.

The simulations ran on an Intel Core2 Duo CPU with 2Gb RAM, under the

Ubuntu 8.10 Operating System.

Table 2
Validation measures obtained by taking the mean over 60 realizations of spatially
averaged statistics over the validation set. The figures are rounded to the second
decimal place. ME: Mean error. MAE: Mean absolute error. MARE: Mean absolute
relative error. MRSE: Mean root square error. MRSRE: Mean root square relative
error. R: linear correlation coefficient.

ME MAE MARE (%) MRSE MRSRE R

(nSv/h) (nSv/h) (nSv/h) (%)

Isotropic variogram −13.12 600.95 130 1428.94 5.84 0.95

Anisotropic variogram −4.55 538.46 77 1402.35 5.76 0.95

4.5 Synthetic data

To further investigate the benefits of incorporating anisotropy estimates in the

interpolation procedure we apply CTI to synthetic data. We generate realiza-

tions from a Gaussian SRF with mean mX = 98, σX = 20 and Gaussian covari-

ance on a square 256×256 grid. We use R = 1, 2, 3 with minimum correlation

length ξ1 = 12 and orientation angles randomly generated in [−45◦, +45◦]. For
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all R we generate 20 realizations of the SRF, we randomly sample a subset of

the grid nodes N , and then predict the field using ordinary kriging at 1000

validation locations. In the application of CHI we interpolate the field on the

anisotropy estimation grid using both bilinear and bicubic interpolation. A

single domain with a single cluster is obtained in this synthetic example.

The dependence of the validation measures ME and MARE as a function of

N is shown in Fig. 4.5 for three cases: (i) isotropic variogram (ii) anisotropic

variogram using bilinear spline interpolation on the anisotropy estimation grid

(iii) anisotropic variogram using bicubic spline interpolation on the anisotropy

estimation grid. We find no systematic dependence of the bias on the inter-

polation method used. The MARE tends to decrease with increasing N for

all three methods. For R = 1, as expected, there is no systematic difference

between the outcomes of the three methods. Incorporating the anisotropy esti-

mates for the case R = 2 tends at first to decrease the MARE with increasing

N in comparison to the isotropic case. The three values seem to converge again

for the higher values of N . There is practically no difference between the re-

sults obtained with the bilinear and bicubic interpolation on the anisotropy

grid. For R = 3 the difference between the MARE obtained with and with-

out anisotropy estimation is more systematic and it continues to increase for

all N considered in this study. In conclusion, this study on synthetic data

shows that there is a benefit in interpolation performance by using anisotropy

estimation versus an isotropic variogram model. At the same time, the bilin-

ear interpolation on the anisotropy grid seems to perform just as well as the

bicubic interpolation.
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Fig. 9. Cross validation measures for R = 1, 2, 3 (i) using anisotropy parameter
estimates obtained with bilinear (circles) and bicubic (crosses) interpolation versus
(ii) using an isotropic variogram model (triangles). The horizontal axis measures
the number of points N used in the sample.

5 Conclusions

This paper introduces the clustered CHI method for the estimation of geomet-

ric anisotropy parameters from scattered data in two spatial dimensions. This

approach resonates with the development of sound statistical methods for the
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processing of spatial data, which is one of the pillars of geoinformatics. In

particular, from the perspective of environmental surveillance, it is necessary

to develop computationally efficient methods that can provide near real-time

warnings for developing environmental threats. The proposed method incor-

porates the computational efficiency of the single-cluster CHI method with

a segmentation procedure. The latter partitions the study area into domains

according to exceedance of threshold vales, and its domain into clusters based

on variations of local sampling density and proximity to established cluster

centres. The interpolation performance of the clustered CHI method depends

on the sampling density, the presence or lack of stationarity, and the differen-

tiability of the mapped process. Increasing the sampling density, the “degree

of stationarity” and the differentiability of the sampled process lead to more

accurate estimates of the anisotropy.

In the case study investigated above, we illustrate the clustered CHI method

by application to a “difficult” data set which involves deviations from Gaus-

sianity due to several factors and significant variations of the sampling density

across the study area. Clustered CHI leads to improved interpolation valida-

tion measures compared to estimates that are based on the isotropic variogram

hypothesis. It is also shown that the method is computationally fast, requir-

ing only a fraction of a second to determine anisotropy parameters on a data

set with as many as ≈ 2000 data points and two domains, one of which con-

tains several clusters. The R codes that implement clustered CHI are part of

the Intamap and IntamapInteractive R packages, which can be downloaded

from http://sourceforge.net/projects/intamap/develop.
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