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ABSTRACT

Many heterogeneous media and environmental processes are statistically anisotropic, that
is, their moments have directional dependence.  The term range anisotropy denotes
processes that have variograms characterized by direction-dependent correlation lengths
and directionally independent sill.  We distinguish between two classes of anisotropic
covariance models: Class (A) models are reducible to isotropic after rotation and

rescaling operations.  Class (B) models are separable and reduce to a product of one-
dimensional functions along the principal axes.  We present a Class (A) model for
multiscale processes and suggest applications in subsurface hydrology.  This model is
based on a truncated power law with short and long-range cutoffs.  We also present a
family of Class (B) models generated by superellipsoidal functions that are based on non-
Euclidean distance metrics.  We propose a new method for determining the orientation of
the principal axes and the degree of anisotropy (i.e., the ratios of the correlation lengths).
This information reduces the degrees of freedom of anisotropic variograms and thus
simplifies the estimation procedure.  In particular, Class (A) models are reduced to
isotropic, and Class (B) models to one-dimensional functions.  Our method is based on an
explicit relation between the second-rank slope tensor (SRST), which can be estimated

from the data, and the second-rank covariance tensor.  The method is conceptually simple
and numerically efficient.  It is more accurate for regular (on-grid) data distributions, but
it can also be used for irregular (off-grid) spatial distributions.  We illustrate its
implementation with numerical simulations.
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I. INTRODUCTION

A central operation in spatial statistics is the estimation of the variogram.  The variogram

quantifies the spatial dependence of geophysical and environmental processes (e.g.,

Christakos, 1992).  The estimation of spatial dependence is important in other scientific

fields as well.  For example, the structure function is a measure of two-point dependence

that provides information about the microscopic structure of materials and helps to

identify important length scales (e.g., Chaikin and Lubensky, 1995).  Recent applications

of the structure function in materials research include nanostructures, such as block

copolymers (Jinnai et al., 2000a,b) and microemulsions (Choy and Chen, 2000), and

paper (e.g., Provatas et al., 1996).  The structure of most natural and engineered materials

is anisotropic.  Hence, their variograms (or of the physical processes that occur within

them) exhibit anisotropic properties.  There are various forms of variogram anisotropy

(e.g., Erikson and Siska, 2000).  In this work we focus on range anisotropy.  The term is

used for processes that have the same variogram sill in all directions but different

correlation lengths.  First, we propose new covariance functions with range anisotropy.

They include a truncated power-law covariance for modeling multiscale processes, and

separable covariance functions based on geometrical generalizations of the ellipse called

superellipsoids.  We discuss the relevance of the truncated power-law covariance for

hydrological applications.  The superellipsoidal covariance functions have anisotropic but
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non-ellipsoidal isolevel contours, and they can be used to model processes with non-

Euclidean distance metrics (Christakos et al., 2000).

The estimation of spatial structure of materials is facilitated by the fact that multiple

samples are usually available, and a statistical average over many realizations can be

calculated.  In contrast, in environmental applications the variogram is de facto estimated

from the single available realization.  Thus, the ergodic principle (e.g., Adler, 1981) is

invoked, in order to justify estimation of the stochastic mean based on the spatial average.

Since ergodicity is an asymptotic property a large number of data are required for good

accuracy.  Nonetheless, the ergodic principle is used by necessity as a working

assumption, even if the sample size is small.  The variogram estimation process requires

the arbitrary definition of discrete separation classes (bins), each bin including a range of

separations (lags).  The bins must contain a minimum number of data pairs (at least 30)

for a “good” approximation of the ensemble average.  In the isotropic case the bins are

defined with respect to the separation magnitude.  In the anisotropic case a larger number

of bins is required to account for the magnitude and orientation of the separation vector.

The number of data pairs per bin and consequently the precision of the estimation are

thus reduced.  The estimated range anisotropy depends on the specific distribution of

separation vectors and the binning scheme.  The optimal anisotropic structure is selected

among the various possibilities by means of an optimization criterion.



4

Anisotropic variogram estimation is simplified if a coordinate system exists in which

the anisotropy is reduced.  For range anisotropic processes such a system exists, and it

can be accessed from the original system by means of rotation and rescaling

transformations.  We propose a new method for determining the necessary

transformations.  The method is based on the covariance tensor identity and uses the

average of the second-rank slope tensor (SRST) of the random field, which can be

estimated from the data.  The SRST method estimates the orientation of the principal

axes and d −1 correlation aspect ratios from the data.  The aspect ratios are defined

arbitrarily with respect to one of the correlation lengths.  Determining the orientation of

the principal axes requires d



−1 angles.  The aspect ratios and the orientation angles are

the anisotropic parameters.  The coordinate system is then accordingly rotated and

rescaled.  In the transformed system the variogram is isotropic for class (A) models, or a

product of one-dimensional functions for class (B) models.  The SRST method is

conceptually simple and numerically efficient.  The accuracy and computational

efficiency of the method are better for data distributed on a regular grid, but the method

can also be used with irregularly spaced data.  Application in both cases is illustrated with

synthetic examples.

The paper is structured as follows: In Section II we define the covariance

classification and propose some new models.  In Section III we introduce the covariance

tensor identity, and we present a mathematical framework for the estimation of the
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anisotropic parameters.  Methods of estimating the mean SRST from data are presented

in Section IV.  In Section V we illustrate the calculation of the anisotropic parameters

using the SRST method.  In Section VI we present our conclusions, and we discuss

directions for future research.

II. RANGE ANISOTROPIC COVARIANCE FUNCTIONS

We will focus on statistically homogeneous, detrended Gaussian random fields X( )s .

The centered covariance function is denoted by cx ( )h , where h  is the separation vector.

Covariance models with range anisotropy involve functions that have the same sill but

different correlation lengths in different directions.  Due to the isotropy of the sill, the

limiting value of the covariance at zero separation is independent of the direction along

which the limit is approached.  However, the derivatives at zero separation have

directional dependence due to range anisotropy.  In the SRST method we use information

about the anisotropy contained in the derivatives of the random field to simplify the task

of variogram estimation.  With respect to the estimation of the reduced variogram, it

helps to distinguish between two model classes.  The models in the first class can be

reduced to isotropic functions.  The models in the second class can be reduced to one-
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dimensional functions.  The steps involved in the calculation of the SRST and the

anisotropic parameters are identical for both classes.  In this paper we will focus on the

estimation of the anisotropic parameters from the full variogram estimation process.

Class (A): Models Reducible to Isotropic

The first class includes all covariance functions that can be expressed as isotropic

functions c rx (˜), where r̃  is the dimension-less separation in a coordinate system

obtained by rotation and rescaling of the original axes.  The separation in the original

system, which is not in general aligned with the principal axes, is denoted by h
�

.  A

coordinate system aligned with the principal axes is obtained by rotating the original

system.  The separation in the new system is denoted by r U h= , where U  is the rotation

matrix.  In the rotated system the covariance function is independent of cross products

r ri j , i j≠ , but it is still anisotropic with correlation lengths ξi  in each direction.  For

isotropic covariances there is no difference between h
�

 and r .  If distances are rescaled in

the new system according to r̃ ri i i= ξ , the covariance function becomes isotropic.

Conversely, the isotropic function c rx (˜) generates the anisotropic function cx ( )h  by

reversing the rescaling and rotation transformations.  Thus, all isotropic covariance

models are generators of anisotropic models by means of rotation and rescaling
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transformations.  Class (A) includes the standard geostatistical models (e.g, Abrahamsen,

1997): the Gaussian, spherical, cubic, rational quadratic, exponential, damped sine and

cosine (with inverse distance or exponential damping), various Bessel functions, and the

hole-effect models.

With the exception of the Bessel function models, the above covariances involve

one or two distinct length scales.  Such covariances are commonly used in groundwater

hydrology (e.g., Gelhar, 1993) to model the correlations of the hydraulic conductivity and

the velocity flow field.  However, subsurface hydrological processes involve multiple

scales (e.g., Cushman, 1984; 1986), because natural porous media are made of grains and

pores of various sizes.  Correlations that involve multiple scales are modelled using

power law functions (Mandelbrot, 1982; Feder, 1988) that follow the general, power-law

expression c rx ( )r ∝ −γ  within a certain range of scales (e.g., Isichenko, 1992).  Such

functions are also called scaling, because a change of scale simply multiplies the function

with a constant scale factor, i.e., c cx x( ) ( )λ λ γr r= − .  A major practical difficulty in

determining if hydraulic conductivity covariances are scaling is the limited size of

subsurface data sets.  In contrast, scaling hypotheses can be tested for surface

hydrological processes, for which data are more abundant.  Thus, it has been established

that rainfall involves multifractal correlations (e.g., Schertzer and Lovejoy, 1987;

Lovejoy and Schertzer, 1995; Menadbe et al., 1999).  In principle, power-law correlations
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can be obtained by a superposition of monoscale fluctuations at multiple scales (e.g.,

Koch and Brady, 1988).  Experimental studies of porous rock in the range of scales

between millimeters and meters (Makse et al., 1996a) indicate power-law correlations.  In

addition, certain analyses of experimental data suggest scaling behavior for the hydraulic

conductivity at the field scale (Neuman, 1990; 1994).  Power-law covariances with scale-

dependent variance have been used to model field-scale hydraulic conductivities (e.g., Di

Federico and Neuman, 1997; 1998).  The exact form of the power-law dependence is

related to the degree of non-homogeneity of the hydraulic conductivity field.  There are

different views on this issue: If hydraulic conductivity is a homogeneous random field,

appropriate power-law models are the fractional Gaussian noise (fGn) and the Lévy-

stable distributions (LSD) (Painter, 1996; Liu and Molz, 1997).  The fGn model has

normal statistics and power-law covariances.  Lévy-stable random fields are

characterized by non-Gaussian, power-law tails in the probability density.  If the log-

conductivity is non-homogeneous, appropriate models are the fractional Brownian

motion (fBm) (Mandelbrot and Van Ness, 1968) and the fractional Lévy motion (fLm)

(Molz et al., 1997).  Then, the log-conductivity increments are homogeneous and have

fGn and LSD statistics respectively.  The reconstruction and permeability properties of

porous media with fBm statistics are investigated in (Kikkinides and Burganos, 1999;

2000).
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For power laws to be mathematically well defined, a cutoff is necessary to avoid

the singularity at zero separation.  The short-range cutoff is not only a mathematical

convenience, since it is related to the smallest length scale with a physical role in the

particular process.  In the case of hydraulic conductivity this could be the size of the

smallest pore.  A modified power-law covariance with short-range cutoff based on the

incomplete gamma function was proposed in (Christakos et al., 2000).  At the opposite

limit, asymptotic persistence of power-law correlations at large distances is a sign of

long-range dependence.  True long-range processes behave as power laws over the entire

system.  In this case, the power-law exponent should satisfy specific integrability

conditions for the spectral density to be well defined (Isichenko, 1992).  Also, true long-

range correlations are a cause of anomalous diffusion behavior such as non-Gaussian tails

(e.g., Bouchaud and Georges, 1990).  However, it is also possible for a system to exhibit

scaling behavior up to a maximum scale (determined from the largest physical feature)

smaller than the system size.  This implies a long-range cutoff of the scaling regime.  The

following covariance model is scaling for w r<< <<ξ  and has short and long-range

cutoffs

c
r

r

w

x ( )
exp( )

r = −

+






σ ξ
ν

2

2

2

2

1

. (1)
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The length w  determines the short-range cutoff, since for r w <<1 the covariance

is approximately c r wx ( ) ( )r ≅ −σ ν2 2 21 2 .  The length scale ξ�  determines the long-

range cutoff, since for r > ξ  the correlations are cut off by the exponential.  The function

cx ( )r  is an admissible covariance, if it satisfies Bochner’s theorem (Bochner 1959) which

requires that the spectral density be non-negative.  This can be proved without evaluating

the spectral density, because cx ( )r  is the product of the exponential exp( )−r ξ  and the

rational function 1 2 2 2
+( )−

r w
ν

.  Both functions are permissible covariances, i.e., they

have non-negative spectral densities.  Hence, their product is also a permissible

covariance.  This follows since the spectral density of the product is given by the

convolution of the spectral density of the components, and the convolution of two non-

negative functions is also non-negative.  In Figure 1 we plot the covariance of Eq. (1) on

a logarithmic scale.  The scaling regime extends over the section of the plot where the

covariance varies as a straight line.  For comparison, we also plot the power law without

the long-range cutoff.  An anisotropic covariance function can be generated from Eq. (1).

In two dimensions, in the coordinate system of the principal axes this is given by
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c

r r

r

w

r

w

x ( )

exp

r =

− +










+ +






σ
ξ ξ

ν
2

1
2

1
2

2
2

2
2

1
2

1
2

2
2

2
2

2

1

. (2)

Note that the covariance of Eq. (2) has anisotropic cutoffs but an isotropic power-law

exponent.  A more general covariance with anisotropic exponents ν1 and ν2 is given by

c

r r

r

w

r

w

x ( )

exp

r =

− +










+






+ +






2

1 1

2

1
2

1
2

2
2

2
2

1
2

1
2

2

2
2

2
2

21 2
σ

ξ ξ
ν ν . (3)

From the numerical viewpoint, simulation of random fields with long-range correlations

that span the entire system is not trivial (e.g., Makse et al., 1996).  An explicit long-range

cutoff that limits the extent of the scaling regime, like the one suggested above, alleviates

numerical difficulties.  However, we emphasize that using a long-range cutoff should be

justified by the analysis of the data or by the physics of the modelled process.

Class (B): Separable Models



12

The second class includes all separable covariance functions with one-dimensional

components of the same functional form.  In a coordinate system aligned with the

principal axes these covariances are expressed as c g rx x i
i

d

( ˜) (˜ )r =
=
∏σ 2

1
, where g( )⋅  is a

permissible one-dimensional covariance function (Christakos, 1992).  Classes (A) and

(B) are not completely disjoint since the Gaussian model belongs to both of them.

However, with this notable exception, the models in class (B) can not be reduced to

isotropic functions.  An example of a class (B) covariance is the hole-effect model,

defined by g r r ri i i(˜ ) sin(˜ ) ˜= .

Superellipsoidal Covariance Models

A new family of separable covariance models can be defined based on superellipsoids

(Wallace, 1968).  The superellipsoids are geometrical generalizations of the ellipse.  In

two spatial dimensions they obey the following equation

r r
r r c

n n
n n1

1

2
2

2

2

1
2

2
2

ξ ξ
+ = + =| ˜ | | ˜ | . (4)

Let us consider the following separable superellipsoidal function
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c g r g rx x
n n( ˜) (| ˜ | ) (| ˜ | )r = σ 2

1
2

2
2 .  (5)

The function cx ( ˜)r  is a covariance if it satisfies Bochner’s theorem.  In view of the

separability property, it is sufficient that the one-dimensional spectral density of

g r n(| ˜ | )1
2  be non-negative.  The shape of isolevel contours and the smoothness of

individual realizations depend on the value of the index n .  According to a familiar

theorem (e.g., Adler, 1981; Yaglom, 1987), a Gaussian random field is differentiable (in

the mean square sense) at every point if the second-order derivative of the covariance

exists and is finite at zero separation.  The second-order derivative of the superellipsoidal

function at zero separation is given by (see Appendix I)

∂
∂

=








 ′′





î
+

′ −



 + ′ 




−

− −

2

1
2

2
2

2

1
1

2 1
1

2

1
2 1

2 2 2
1

1
2 1

2 1
1

2

2 2
1

2

c

r
r

n
r r g

g

n n
r r

g

n
r r

x
x

n n

n n

( ˜)
(| ˜ | ) ˜ sgn( ) ( )

( )
˜ sgn ( )

( )
˜ ( )

r σ
ξ

ω

ω
ξ

ω
ξ

δ

. (6)

In Eq. (6) the prime denotes differentiation with respect to ω ξ≡ r
n

1 1
2

, and sgn( )r1

denotes the sign function.  The first and second terms on the right hand-side of Eq. (6) are

proportional to sgn ( )2
1 1r = .  Thus they are well defined at zero separation.  The third
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term is potentially singular due to the delta function.  However, this term vanishes if

2 1 1n − >  or ′ =g ( )0 0.  These conditions guarantee a finite derivative at zero separation.

Hence, a superellipsoidal random field with covariance given by Eq. (5) is differentiable

if n < 2 or ′ ≠g ( )0 0.  Note that the condition n < 2 is necessary but not sufficient.  The

index may need to satisfy additional conditions for the function (5) to be a permissible

covariance, as shown below.

Exponential Superellipsoidal

A special case of superellipsoidal covariance is the exponential superellipsoidal that

is expressed as follows

c
r r

x x

n n

( ) expr = − −








σ

ξ ξ
2 1

1

2
2

2

2

. (7)

The functions defined by Eq. (7) are not, in general, reducible to an isotropic form, and

hence they differ from the isotropic exponential models c rx x( ) expr = −( )[ ]σ ξ ν2

(Abrahamsen, 1997) in which r = r  is the Euclidean distance.  The only exception is

the Gaussian case ν = =2 2n .  The function c r rx x( ) expr = − −( )σ ξ ξ2
1 1 2 2  is known

to be a permissible covariance function (Christakos et al., 2000).  This is a special case of
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the exponential superellipsoidal family with index n = 2.  In Figure 2 we plot the isolevel

contours of the functions (7) for index values n = 0 5. , 1, 1.5, 2, 2.5 and 3.  These plots

show the deviation of the isolevels from the ellipsoidal shape.  The isolevel contours are

rounded rectangles for n <1, ellipses for n =1, concave diamonds for 1 2< <n ,

diamonds for n = 2, and convex (“pinched”) diamonds for n > 2.  In Figure 3 we plot the

one-dimensional spectral density of the six exponential superellipsoidals with the above

values of the index.  The spectral density calculations used the Fast Fourier Transform

(e.g., Press et al., 1986).  All densities are non-negative except for n = 0 5. .  Hence, the

exponential superellipsoidal with n = 0 5.  is not a permissible covariance.  It can be

shown more generally that the non-negativity condition is true for ∞ > ≥n 1 (Schoenberg,

1938).

Thus, the permissibility condition for the exponential superellipsoidals defined by Eq.

(7) is ∞ > ≥n 1.  In addition, as we showed above the differentiability condition is

2 1> ≥n .  As it is seen in Figure 3, the covariance functions of the differentiable random

fields are smoother (more rounded) at the edges.  A realization of a two-dimensional

superellipsoidal random field with unit variance, correlation lengths ξ� ξ1 2 5= = , and

index n = 3 is shown in Figure 4.

III.THE COVARIANCE TENSOR IDENTITY
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The covariance tensor is the second-rank tensor generated by the second order derivatives

of the covariance at zero separation i.e., ∂ ∂ ∂2c h hx i j( )h .  If the covariance tensor exists

at the origin the random field is differentiable in the mean square sense.  The second-rank

slope tensor (SRST) Xij ( )s  is generated by the products of the local slope vectors ∇ X( )s ,

i.e., X
X

s

X

sij
i j

( )
( ) ( )

s
s s= ∂

∂
∂
∂

.  Thus, the SRST is also a random field.  Its mean value is

denoted by 〈 〉 ≡X Qij ij( )s , where the brackets denote the stochastic average.  If the first

derivative of the covariance vanishes at zero separation, the following tensor identity

(e.g., Swerling, 1962) relates the mean SRST to the covariance tensor as follows

Q
X

s

X

s

c

h hij
i j

x

i j

≡ = −
=

∂
∂

∂
∂

∂
∂ ∂

( ) ( ) ( )

( , )

s s h

h

2

0 0

. (8)

Eq. (8) is valid in all coordinate systems.  It is not valid for the exponential covariance,

the first derivative of which does not vanish.  The covariance tensor identity can be used

to estimate the anisotropic parameters from the mean SRST.  The latter is estimated from

the available data.  When the anisotropic parameters are known, it is possible to

transform into a coordinate system in which the covariance function is either isotropic or

can be expressed as a separable product of identical one-dimensional functions.  The
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transformation involves a rotation that aligns the coordinate system with the principal

axes, and a rescaling that makes all the correlation lengths equal.  To estimate a

variogram that becomes isotropic in the transformed system standard geostatistical

methods can be used (e.g., Christakos, 1992; Olea, 1999). To estimate a separable

variogram, one of its components along a principal direction should be determined.  In

both cases the estimation is simplified, because there is no need to consider many

directions in space.  Once the variogram is estimated in the transformed system, the

inverse set of transformations should be used to obtain the variogram in the original

coordinate frame.

If ξi , i d=1,...,  denote the correlation lengths along the principal axes, d −1 aspect

ratios can be defined based on the equation

R ii
i

( ) ,1
1 1≡ ≠ξ

ξ
. (9)

The selection of ξ1 as the reference length is arbitrary.  The correlation length in any of

the principal directions can be used to anchor the ratios.  Note that

R( ) ( ) ( )( , ,..., )1 2 1 11= R Rd  is a vector in ℜ d  with d −1 independent components.  Next, we

determine the orientation of the principal axes and the correlation aspect ratio from the

SRST.  We consider first a coordinate system that is aligned with the principal axes.
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Principal Axes Coordinate System

In a coordinate system the axes of which coincide with the principal directions of

anisotropy we can express the covariance function in terms of the dimensionless

separation ̃r , where ̃r ri i i= ξ  and ξi  is the correlation range in the direction ri .  Then,

the covariance tensor identity leads to the following expression

Q
c

r rij
i j

x

i j

= −
=

1 2

0 0
ξ ξ

∂
∂ ∂

( ˜)
˜ ˜

( , )

r

r

. (10)

In this system the covariance tensor for both Class (A) and (B) models is isotropic at zero

separation, that is, − ≡
=

∂ ∂ ∂ σ ζ2

0 0

2 2c r rx i j x( ˜) ˜ ˜
( , )

r
r

 for all directions i j, , where ζ  is a

dimensionless number.  Then, based on Eq. (10) we obtain the following d −1 equations

for the aspect ratios

Q

Q
R iii

i
i

11

1
1 1= = ≠ξ

ξ ( ), . (11)
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The roots of the Eqs. (11) are the correlation aspect ratios.  A coordinate system aligned

with the principal axes is not always practical for applications.  Nonetheless, it is useful

for testing the accuracy of anisotropic simulation methods, and it is often the most natural

choice for engineered materials.

General Coordinate System

In general the axes of the coordinate system do not coincide with the principal axes.  The

covariance tensor identity is valid regardless of the coordinate system alignment.  As

discussed above, if r  is the separation vector in the system of the principal axes and r̃

the rescaled (isotropic) separation, then r U h=  where U  is a rotation matrix, and

r̃ ri i i= ξ , for i d=1,..., .  Using the chain rule for partial derivatives

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂h r h h U ri k i k ki k= =( )  and ∂ ∂ ξ ∂ ∂r ri i i= −1( ˜ ) .  In these expressions and in

the following summation is implied over repeated indices.  The second-order derivative

operator in the original system is expressed in terms of its equivalent in the principal axes

system as follows

∂
∂ ∂ ξ ξ

∂
∂ ∂

2 2

h h

U U

r ri j

ki lj

k l k l

= , (12)
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Finally, by using Eq. (12) and rescaling the lengths the covariance identity is expressed as

Q U R U R U U Rij
x

ki k lj l kl
x

ki kj k= =σ ζ
ξ

δ σ ζ
ξ

2 2

1
2 1 1

2 2

1
2 1

2
( ) ( ) ( ) ,     i j d, ,...,=1 . (13)

The expression (13) of the covariance identity constitutes a system of equations.  The

unknowns of the system are the components of the rotation matrix U  and the vector R.

These should be determined from the mean SRST elements Qij .  The parameter ζ 2 and

ξ1
2  are not determined by the solution of the system.  The number ζ 2 depends on the

value of second-order derivative of the covariance at zero separation.  For example, in the

Gaussian case one finds ζ 2 2= .  The value of ζ 2 is not required for the rotation and

rescaling transformation.  The correlation length ξ1 is determined from the estimation of

the experimental variogram in the transformed system.

Two-dimensional Random Field

We derive specific expressions based on the Eqs. (13) that apply to two-dimensional

random fields.  The rotation matrix U  in two dimensions is given by

U =
−







cos sin

sin cos

θ θ
θ θ

, (14)
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and R( ) ( )( , )1 2 11= R .  The equations (13) are then expressed as follows

Q Rx
11

2 2

1
2

2
2 1
2 2= +( )σ ζ

ξ
θ θcos sin( ) , (15)

Q Rx
22

2 2

1
2 2 1

2 2 2= +( )σ ζ
ξ

θ θ( ) cos sin (16)

Q Q Rx
12 21

2 2

1
2 2 1

21= = −[ ]σ ζ
ξ

θ θsin cos ( )( ) . (17)

The orientation of the principal axes is determined by the angle θ , and the aspect ratio is

determined by R2 1( ) .  By dividing both sides of Eqs. (16) and (17) with the terms on the

respective sides of Eq. (15) we obtain the following set of equations

Q

Q

R

R
22

11

2 1
2 2

2 1
2 21

=
+

+






( )

( )

tan

tan

θ
θ

, (18)

and
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Q

Q

R

R
12

11

2 1
2

2 1
2 2

1

1
=

−
+

tan ( )

tan
( )

( )

θ
θ

. (19)

Eqs. (18) and (19) constitute a nonlinear system, the roots of which are the anisotropic

parameters.  The nonlinear system can be solved by the minimization of the following

objective function

Φ( , )
tan

tan

tan ( )

tan( )
( )

( )

( )

( )

θ
θ
θ

θ
θ

R
Q

Q

R

R

Q

Q

R

R2 1
22

11

2 1
2 2

2 1
2 2

2

12

11

2 1
2

2 1
2 2

2

1

1

1
= −

+
+



















+ −
−

+












, (20)

The function Φ( , )( )θ R2 1  is non-negative, and it becomes zero when both terms inside the

brackets are zero.  Hence, the minimization of the objective function yields the

anisotropic parameters.

IV. ESTIMATION OF THE MEAN SRST

In this section we discuss the estimation of the mean SRST from the data.  For practical

estimates of the SRST the derivative operators in Xij ( )s  are replaced by discrete

differences.  Hence, the accuracy and precision of the SRST estimation depend on the
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spatial distribution of the data.  Accuracy refers to how closely the mean estimate

〈 〉ˆ ( )Xij s  approximates the actual stochastic mean 〈� 〉Xij ( )s .  Precision is a measure of the

uncertainty of each estimate ˆ ( )Xij s .  For a data point located at position sk  (k N=1,...,

where N  is the number of data points) the nearest-neighbor distance r knn( )s , is defined as

r l k l Nk l knn( ) min , , ,...,s s s= − ≠ ={ }1 .  In general r knn( )s  is a distributed variable.  The

data distribution is spatially dense if the average nearest-neighbor distance

r N rk kk
N

nn nn( ) ( )s s= −
=∑1
1  is sufficiently small for the discrete difference approximation

to be accurate.  Hence, a data set is dense if the shortest correlation length is a multiple of

the maximum nearest-neighbor distance r r k Nknn,max nn= =max[ ( )], ,...,s 1 .  We define a

density index by means of µ ξde nn,max= min r , where ξ ξmin min( ), ,...,= =i i d1 .  Large

values of the index imply higher sampling density.  Ideally, the density index should be

larger than one.  However, note that very small distances in the distribution of r knn( )s

could lead to numerical instabilities in the calculation of the derivatives, as discussed

below.  The data distribution is uniform if the nearest-neighbor distance is approximately

uniform from site to site.  The variation of the nearest-neighbor distance is measured by

Var nn nn
2

nn( ) ( ) ( )r N r rk kk
N= −[ ]−
=∑1 2
1 s s .  We define the uniformity index as the inverse

coefficient of variation of the nearest-neighbor distance distribution, i.e.,

µun nn nnVar= r r( ) .  Hence, uniformity increases for higher values of the index.
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SRST on Regular Grid

Absolute uniformity, µun = ∞, is achieved for regularly distributed data on a grid.

Regularly spaced data are not the rule in environmental applications.  However, uniform

spacing is often a natural choice for laboratory studies of porous materials (e.g., Henriette

et al., 1989).  Regular grids are also used for simulations of environmental processes.  In

addition, they are useful for testing how accurately random field simulators generate

specific anisotropic properties.  Let us assume that X( )s  is distributed on a Cartesian grid

G  with N  points.  The mean SRST is estimated by means of a discrete estimator Q̂ij

based on forward differences as follows

ˆ ( ˆ ) ( ) ( ˆ ) ( )Q
N b b

X b X X b Xij
i j

k i i k k j j k
k

N

= + −[ ] + −[ ]
=
∑1

1

s e s s e s . (21)

The grid step is bi  and êi  denotes the unit vector in direction si .  The right hand-side of

Eq. (21) can be calculated very efficiently numerically.  The spatial distribution is dense

if bi i< ξ .  Dense distributions give better accuracy than sparse ones, because the latter

introduce systematic errors due to inadequate discretization.
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Numerical Example

We illustrate the estimation process by means of a synthetic numerical example.  Assume

a random field with a Gaussian covariance function

c
r r

x x( ) expr = − −






σ
ξ ξ

2 1
2

1
2

2
2

2
2 . (22)

The SRST in system of the principal axes is given, according to Eq. (8) above, by

Q =










−

−2
0

0
2 1

2

2
2σ

ξ
ξx . (23)

We simulate a random field with σ x
2 1= , ξ1 6= , ξ2 4=  on a square grid with L nodes

per side using the Fourier Filtering Method (FFM) (e.g., Makse et al., 1996b; Le Ravalec

et al., 2000).  The “true” values of the mean SRST tensor for the above values of the

variance and correlation lengths are Q11 0 0556= .  and Q22 0 1250= . .  The anisotropic

ratio is R2 1 1 5( ) .= .  A typical realization of the random field on a domain with 100 nodes

per side is shown in Figure 5.  We estimate the mean SRST for different values of L

using Eq. (21).  The SRST components and the aspect ratio R2 1( )  are plotted in Figure 6.

The components of the SRST approach stable values for L>100.  The aspect ratio tends to
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a stable value faster.  The difference is probably due to the dependence of the SRST on

the variance that makes it sensitive to deviations of the sample variance from the

theoretical value.  In contrast, the aspect ratio is independent of the variance.  The

accuracy of the aspect ratio estimate depends on the departure from perfect ergodic

conditions, i.e., on the ratio of the domain length over the correlation length.  Similarly,

precision improves as the domain size increases and spatial averaging suppresses the

fluctuations.

SRST for Irregular Spatial Distribution

For data that are not distributed on a grid various approximate estimators of the SRST

can be defined.  We assign to each point sk  a nearest neighbor denoted by snn(k) such that

the Euclidean distance r k k knn nn( )( )s s s= −  is minimized.  There are other ways to define

the neighbors, and some possibilities are discussed in Section VI.  The discretization step

at sk  in direction si , i d=1,..., , is given by

∆s s sk i k i k i, nn( ), ,= − . (24)
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A location sk  is used in the calculation of Qij  if the values of the separation magnitudes

| |∆sk i,  and | |∆sk j,  are within a specified interval.  Separations exceeding an upper cutoff

α u introduce smoothing effects in the calculation of the slope.  Separations smaller than a

lower cutoff α l  can introduce large errors due to numerical fluctuations.  Hence, the

number of data points used in the estimation of Qij  is given by the following expression

N s sij k i
k

N

k jeff, , u l , u l= ( ) ( )
=
∑ π α α π α α| |; , | |; ,∆ ∆

1

, (25)

where π α αx; ,u l( ) is the unit pulse function that equals one if α αu l> >x  and zero

otherwise.  Consequently, the mean SRST is estimated as follows

  

(
Q

N

X X

s
s

X X

s
sij

ij

k k

k i
k i

k k

k j
k j

k

N

=
− ( )









− ( )









=

∑1

1eff,

nn( )

,
, u l

nn( )

,
, u l

( ) ( )
| |; ,

( ) ( )
| |; ,

s s s s

∆
∆

∆
∆π α α π α α .

(26)

The cutoffs are not a priori specified.  Ideally, the upper cutoff should satisfy

α ξ ξu << min( ,..., )1 d  to avoid excessive smoothing of the random field derivatives.

However, the correlation lengths are unknown before the variogram is known.  It is often

possible to guess an initial estimate for the correlation length(s) by visual inspection of
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contour plots of the data.  The initial “guess” for α u can be used to calculate the SRST.

Ultimately, this will have to be confirmed by comparing with the estimated correlation

lengths.  A comprehensive study of the accuracy and precision of the estimator with

respect to the data distribution and the cutoffs is beyond the scope of this study.

Numerical Example

We illustrate the calculation of the SRST for an irregular data distribution using a

synthetic random field.  We select N  random sites within a square domain of length L.

The FFT simulation method used above works only for regular grids.  Hence, we use

instead a harmonic superposition method (Drummond, 1987; Jinnai et al., 2000) which is

less efficient numerically but can generate a random field at any set of locations.  In this

method the random field is represented as follows

X
Nx n n

n

N

( ) cos( )s k s=






⋅ +
=
∑σ φ2

1 2

1m

m

. (27)

The phase variables φn  are distributed uniformly in [ , ]0 2π .  The wavevectors kn are

randomly distributed with probability density f A cn x nx( ) ˜ ( )k k= , where ˜ ( )cx nk  is the

spectral density of the covariance cx ( )r  and f A cn n x nx( ) ˜ ( )k dk k= = [ ]∫
−1

.  In particular,

the probability density corresponding to the Gaussian covariance of Eq. (22) is given by
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f k knx( ) exp `k = ( ) − +( )[ ]ξ ξ π ξ ξ1 2 1
2

1
2

2
2

2
24 4 .  Based on the central limit theorem, the

superposition given by Eq. (27) approaches asymptotically the normal distribution with

Gaussian covariance as the number of modes Nm  tends to infinity.

In Figure 7 we show 500 random sites on a 80 80×  square domain.  Each site is

connected with a straight line to its nearest neighbor.  We generate the “data set” from a

random field with σ x =1, Gaussian covariance, ξ1 4= , ξ2 6= , and principal axes

oriented along the domain sides.  Hence, the mean SRST values corresponding to this

field according to Eq. (12) are: Q11 0 1250= . , Q22 0 0556= . , and Q12 0= .  The number of

modes used in the simulation is Nm =14000.  The “data set” obtained is shown in Figure

8.  The plot is based on a map of estimated values on a regular grid obtained from the

“data” using linear interpolation.  The distribution of the nearest neighbor distances

r knn( )s  is shown in the histogram of Figure 9.  The mean of the distribution is

r knn( ) .s ≅ 1 79, and the variance is Var nn( ) .r ≅ 0 98, giving a uniformity index

µun ≅ 1 83. .  The maximum nearest neighbor distance is rnn,max ≅ 5 40. , which gives a

density index µde ≅ 0 56. .  This means that the “data set” is fairly uniform, but not very

dense.  The sparseness of the spatial distribution is expected to have a negative impact on

the estimation of the SRST.  We show in Table I the estimates of the SRST components

for different values of the lower cutoff.  The upper cutoff used in these calculations is

α u = 2, i.e., one half of the shortest correlation length.  The best agreement with the
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theoretical values is obtained for α l ∈ −[ . ]1 1 5 .  However, the number of data points

involved in the average for these values of the cutoff is small, implying reduced precision

of the estimation.  In conclusion, the relatively small number of points in the data set

imposes strong constraints on predictability.  This is, however, an inherent limitation of

all spatial statistics methods when the size of the available data set is small.

V. ESTIMATION OF ANISOTROPIC PARAMETERS

Estimation of the anisotropic parameters is based on the solution of the general Eqs. (13).

In particular, in two dimensions the anisotropic parameters are determined from the

minimization of the objective function (20), as discussed in Section III.  This procedure

requires estimates of the mean SRST, which can be obtained from the data as discussed

in Section IV.  Below we illustrate the numerical procedure using synthetic random field

examples.

Numerical Examples

Let us consider the Gaussian covariance function of Eq. (22) with correlation lengths

ξ1 4 5= .  and ξ2 3= .  We assume that the principal axes are rotated by θ = °45  with

respect to the coordinate system.  We calculate the ratios of the SRST elements from Eqs.
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(18) and (19), obtaining Q Q22 11 1=  and Q Q12 11 5= − .  We minimize the objective

function Φ( , )( )θ R2 1  with the above values of the mean SRST ratios using the MATLAB

routine FMINS with initial values θ0 0= ° and R2 1 1( ) = .  The minimization is based on

the simplex search method of Nelder and Mead (e.g., Press et al., 1986).  The solutions

are R2 1 1 5000( ) .=  and θ = °450002.  in excellent agreement with the exact values.

Next, we calculate the SRST for the synthetic random field on a grid shown in Figure

10.  The random field has correlation lengths ξ� 1 7 5= .  and ξ2 5= .  The principal axes are

rotated by 45°  as it can be seen from the orientation of the correlated regions in Figure

10.  The SRST elements are estimated numerically based on Eq. (21).  Then, they are

used in Eq. (27) to estimate the anisotropic parameters.  The results for three different

realizations with the same aspect ratio and orientation angle (i.e., R2 1 1 5( ) .=  and

θ = °45 ) but different correlation lengths are compared in Table II with the theoretical

values.  The latter are given for the SRST elements from Eqs. (15)-(17) using ζ 2 2=  for

the Gaussian covariance.  The estimates for the aspect ratio and the orientation angle are

very accurate, especially for the two smaller correlation lengths.  As the correlation

length increases the accuracy of the estimates is reduced.  This is attributed to departure

from the ergodic conditions, due to the finite size of the sample.  The estimates of the

mean SRST elements are not as accurate.  This is due, as we discussed above, to

fluctuations of the sample variance.
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VI. CONCLUSIONS AND DISCUSSION

In this paper we discuss issues related to the modeling of range anisotropy in

environmental processes.  We present an anisotropic, truncated power-law covariance

with short-range and long-range cutoffs.  This model can be used for stochastically

homogeneous processes that exhibit scaling behavior over a range of scales.  We also

introduce a family of separable covariances based on superellipsoids.  These functions

have non-elliptical isolevel contours and are useful if the distance metric is non-

Euclidean.  We also propose a new method for estimating the anisotropic parameters (i.e.,

the correlation aspect ratios and the orientation of the principal anisotropy axes) of an

random field.  This method is based on the covariance tensor identity and employs the

mean Second-Rank-Slope Tensor (SRST), which can be estimated from the available

data.  We propose SRST estimators for both regular (on-grid) and irregular (off-grid) data

distributions.  We also formulate a general system of equations that relate the mean SRST

to the anisotropic parameters in any number of dimensions.  In two spatial dimensions we

derive an explicit system of nonlinear equations that determines the anisotropic

parameters.  We solve the system using a minimization method.  We demonstrate how to

calculate the mean SRST and the anisotropic parameters using simulated random fields.
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Approaches for optimizing the mean SRST estimates for irregular data distribution

merit further investigation.  How to determine the optimal value of the lower cutoff to be

used in the discrete approximation of random field derivatives is an open issue.

Calculations using very low cutoff values are sensitive to numerical fluctuations that

compromise the accuracy of the estimate.  On the other hand, by increasing the lower

cutoff precision is reduced following a reduction in the number of nearest neighbor pairs.

We have based the SRST estimation on the Euclidean distance between points.

However, the point with the nearest value of the x  (or y ) coordinate is not necessarily

the nearest neighbor based on the Euclidean distance.  An alternate approach is to define

nearest neighbors separately in each direction.  In addition, next nearest neighbors can be

considered if the distance between two nearest neighbors is smaller than the lower cutoff.

These changes will increase the number of points that can be used in the spatial average.

Another issue is the maximum aspect ratio that can be accurately estimated.  This

obviously depends on the domain size.  Since the estimation procedure is based on the

ergodic principle, the domain size should significantly exceed the largest correlation

length.  Otherwise, the estimates will be inaccurate.

We have presented numerical simulations based on the Gaussian covariance, which is

a Class (A) model.  Other types of covariances from both classes and random fields with

larger variances should be investiagted.  Finally, extension of the method to three-

dimensional random fields is straightforward, based on the general Equations (13).
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APPENDIX I

We calculate the second partial derivative of the covariance function
c g r g rx x
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Let us define ω ξ≡ r
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The derivative is given by
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FIGURE CAPTIONS

Figure 1: Plot of the power-law covariance with short-range cutoff w = 5 and exponent

γ =1 5. .  Function with long-range cutoff ξ = 4000 (solid line) and without (broken line).

Figure 2: Plot of the isolevel contours of exponential superellipsoidal functions for six

different values of the exponent n .

Figure 3: Plot of the power spectral density for the six exponential superellipsoidal

functions with exponents as shown in Figure 1.

Figure 4: Realization of an exponential superellipsoidal random field with n = 3

Figure 5: Realization of a Gaussian random field with anisotropic Gaussian correlation on

a grid aligned with the principal axes.

Figure 6: Plot of the diagonal elements of the SRST and the anisotropic ratio obtained by

spatial average over one realization as a function of the grid size (number of RF points)

for sizes ranging from 40 to 161 nodes per side.

Figure 7: Plot of 500 randomly selected locations and of their nearest neighbors

Figure 8: Grayscale plot of the irregularly-spaced random field based on linear

interpolation.  The positions of “data” are marked with stars.

Figure 9: Histogram of nearest neighbor distances.

Figure 10: Plot of a two-dimensional random field with Gaussian covariance and unit

variance, ξ ξ1 26 5 5= =. , .  The principal axes are at 45°  with respect to the coordinate

system.
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TABLE CAPTIONS

Table I: Estimates of the mean SRST tensor as a function of the lower cutoff.  Results are

obtained from sampling a zero-mean random field with σ x =1, b1 4= , b2 6=  at 500

random locations on a square domain 80 80× .  Theoretical values of the mean SRST

elements are Q11 0 1250= . , Q22 0 0556= .  and Q12 0= .  The number of sites used in the

calculation of each element is also shown.  The upper cutoff is α u = 2.

Table II: Estimates and theoretical values of the mean SRST, the aspect ratio and the

orientation angle (in degrees) for three realizations of a two-dimensional random field

with different correlation lengths.  The aspect ratio is 1.5 and the orientation angle 45°
for all the realizations.
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α l   
(
Q11   

(
Q22   

(
Q12

Neff, 11 Neff, 22 Neff, 21

0.1 15.237 28.232 -0.109 424 420 359

0.2 1.508 0.584 0.002 380 385 298

0.3 0.703 0.442 -0.005 355 368 265

0.4 0.653 0.336 -0.033 323 334 216

0.5 0.466 0.229 -0.039 295 309 180

0.6 0.303 0.218 -0.056 263 282 141

0.7 0.298 0.193 -0.052 241 255 110

0.8 0.281 0.175 -0.060 192 202 69

0.9 0.172 0.139 -0.034 169 171 55

1.0 0.161 0.132 -0.005 156 154 40

1.1 0.150 0.121 -0.041 137 129 31

1.2 0.152 0.084 0.008 125 99 17

1.3 0.143 0.084 -0.002 99 84 12

1.4 0.141 0.074 0.009 84 68 8

1.5 0.151 0.078 -0.020 74 52 6

Table I
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Q11 Q22 Q12
R2 1( ) θ

ξ ξ1 24 5 3= =. ,

Estimated 0.1132 0.1250 -0.0441 1.48 41.18

Theoretical 0.1605 0.1605 -0.0617 1.50 45

ξ� ξ1 27 5 5= =. ,

Estimated 0.0475 0.0486 -0.0193 1.53 44.17

Theoretical 0.0578 0.0578 -0.022 1.50 45

ξ ξ1 215 10= =,

Estimated 0.0130 0.0147 -0.0037 1.32 38.46

Theoretical 0.0144 0.0144 -0.0056 1.50 45

Table II


