
Data-driven Warping of Gaussian Processes for
Spatial Interpolation of Skewed Data

Dionissios T. Hristopulos 1

with Vasiliki Agou and Andreas Pavlides 2

1School of Electrical and Electronic Engineering, Technical University of Crete, Chania, Greece

2School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece

Presented at the EGU General Assembly 2022

A G

¥ ¥¥ ¥ ¥ ¥ ¥¥ ¥ ¥¥¥ ¥¥

A G

¥ ¥¥ ¥ ¥ ¥ ¥¥ ¥ ¥¥¥ ¥¥

1 / 9



Motivation

Generating accurate estimates
and maps from sparse,
non-Gaussian data remains a
challenge.

Observed data distributions do not
always comply with explicit
mathematical models.

Machine learning is in fashion;
how does geostatistics fit in?
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What are Gaussian Process Regression (GPR) and
Data-driven Warping?

Gaussian processes are Gaussian random fields defined in feature
spaces.

GPR prediction is “equivalent” to kriging in feature space.

“Warping” the process means applying a nonlinear transform to
normalize the data before the regression step [Snelson et al., 2004].

Data-driven warping means that the warping transform is learned from
the data using a non-parametric, kernel-based estimator.

(1) Agou, Pavlides, Hristopulos. “Spatial Modeling of Precipitation Based on Data-Driven Warping
of Gaussian Processes.” Entropy 2022, 24, 321.

(2) Pavlides, Agou, Hristopulos. “Non-parametric Kernel-Based Estimation of Probability
Distributions for Precipitation Modeling.” arXiv preprint, arXiv:2109.09961 (2021).
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Learning the Cumulative Distribution Function using
Kernels

Kernel functions are used to
estimate the CDF.

CDF steps are smoother than the
staircase estimate.

A theoretical model of the
probability distribution is not
necessary.
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Warped Gaussian Process Regression in a Nutshell
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Gaussian Process Regression (GPR) compared to
wGPR for Test Function

x(s) = [sin(πs) + σε ε(s) ]
1/3

, s ∈ [−1,1]

σε = 0.1, ε(s) ∼ N (0,1)
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Example: SIC 1997 Swiss Rainfall Data

Training: 100 points. Validation: 367 points. Map Grid: 6251 point inside
convex hull. Optimal variogram: Spartan variogram (Boltzmann-Gibbs with
gradient and curvature terms). Kernel for warping: Epanechnikov.
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Contributions

We introduce data-driven warping which is a flexible, non-parametric
approach for normalizing non-Gaussian data.

Our approach differs from others because the normalizing transform is
expressed in terms of kernel functions and the data values.

In data-driven wGPR we combined data-driven warping with Gaussian
process regression, leading to a more flexible spatial prediction method
than GPR.

wGPR allows us to use commonly known geostatistical methods in the
broader framework of Gaussian processes.
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