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Non-parametric ldentification of Anisotropic
(Elliptic) Correlations in Spatially Distributed
Data Sets

Arsenia Chorti and Dionissios T. Hristopulds

Abstract

Random fields are useful models of spatially variable quantities, such as those occurring in en-
vironmental processes and medical imaging. The fluctuations obtained in most natural data sets are
typically anisotropic. The parameters of anisotropy are often determined from the data by means of
empirical methods or the computationally expensive method of maximum likelihood. In this paper we
propose a systematic method for the identification of geometric (elliptic) anisotropy parameters of scalar
fields. The proposed method is computationally efficient, non-parametric, non-iterative, and it applies
to differentiable random fields with normal or lognormal probability density functions. Our approach
uses sample based estimates of the random field spatial derivatives that we relate through closed form
expressions to the anisotropy parameters. This paper focuses on two spatial dimensions. We investigate
the performance of the method on synthetic samples with Gaussian amnMatrrelations, both on
regular and irregular lattices. The systematic anisotropy detection provides an important pre-processing
stage of the data. Knowledge of the anisotropy parameters, followed by suitable rotation and rescaling
transformations restores isotropy thus allowing classical interpolation and signal processing methods to

be applied.
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I. INTRODUCTION

The efficient stochastic modeling of multi-dimensional data is at the epicenter of geophysical, infor-
mational and environmental sciences as well as image processing and even transistor circuit design
methodologies [1]. Spatial statistics provides important tools for modeling the underlying processes
in a variety of applications, using classical correlation methods [2] or semivariograms [3] and spatial
interpolation based on kriging [4], [5] and Wiener filtering [6], [7] methods. In recent years, there is also
a growing interest in spatio-temporal variogram and covariance models [8]. Furthermore, over the past
few years variogram methods have been introduced in image processing applications such as medical
imaging [9], [10], [11], [12] and brain mapping [13], [14].

Most signal processing methods are based on the assumption that the Spatial Random Fields (SRFs) are
statistically homogeneous and isotropic. Statistical homogeneity implies that the SRF correlation function
depends only on the lag vector between two points, but not on their exact location [15]. Statistical isotropy
implies that the correlation function depends purely on the Euclidean distance, but not on the direction
of the lag vector, i.e., that the correlation lengths are equal along every direction [16]. The assumption
of isotropy generally fails in natural SRFs. Spatial data often exhibit continuity properties that depend
on the direction in space.

Two types of anisotropy are usually considered in geostatistical studies: (i) geometric anisotropy [17]
(also known as elliptic or range anisotropy) implies that the correlation iso-level contours are ellipses (in
2D) or ellipsoids (in 3D), (ii) zonal anisotropy implies a direction dependent variogram sill. The focus
of this paper is on geometric anisotropy in two spatial dimensions (called anisotropy hereon).

Determining the parameters of anisotropy allows a coordinate system transformation that renders the
spatial dependence statistically isotropic in the new system (i.e. the iso-level contours become circles).
The geometric anisotropy in a given 2D sampling coordinate system ofraxedy is fully characterized
by the anisotropy ratid® and the orientation anglé. R represents the ratio of the correlation lengths
along the principal axes of anisotropy (i.e. it is the ratio of the semi-axes of the elliptical iso-level
contours) and is the rotation angle between the principal coordinates system and the sampling system.
The isotropic transformations in spatial data are depicted in Fig. 1.

The principal system of axes is first aligned with the sampling coordinate system by rotation. Following
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Fig. 1. Isotropic transformations in two dimensions.

that, the rotated principal coordinate system is rescaled so that we obtain an isotropic coordinate system in
which iso-level correlation contours become circles. The coordinates in the rotated and rescaled isotropic

principal coordinate system are expressed as follows, in relation to the initial sampling coordinate system:

U = xcosf+ysinf @

0 = (—zsinf+ycosh)R (2)

Empirical estimates of geometric anisotropy are based on the visual inspection of geological maps or
the estimation of the experimental directional variograms (structure functions). The latter are estimated
along the principal directions, if these are known a priori (not a typical case), or arbitrarily in the
North-South and East-West directions, or in multiple defined directions) [18], [17]. The estimation of
directional variograms is an operation with numerical comple&ityv?) and requires making empirical
choices pertaining to discretization (i.e., the number of radial distance and orientation angle classes).
In addition, fitting of the directional variograms to a parametric model can be conducted by means of
various methods, and the choice influences the anisotropy estimation.

An alternative approach for the evaluation of the anisotropy parameters of spatial data is based on
maximum likelihood estimation (MLE) [19]-[21], which presumes a given parametric correlation model.
The MLE seeks optimal parameters (in 2D these involve the variance, correlation length, anisotropic
ratio, and orientation angle) for this model. This task is computationally greedy, since for every iteration
of the optimization algorithm the covariance matrix of the data is calculated and inverted. This procedure
has to be repeated for all possible correlation models before the ML estimator determines the most likely
one. The number of iterations and the accuracy of the MLE estimates depend crucially on the initial

guesses of the inferred parameters.
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Another method for the estimation of geometric anisotropy is the Bayesian updating method presented
in [22]. In this approach, the posterior distribution of the anisotropy parameters is sampled using (i) a
prior distribution and (ii) a noniterative importance-sampling Monte Carlo method with an approximating
importance sampling density. The prior distribution employed in [22] was based on information from
earlier years. The importance sampling density, used to approximate the likelihood of the anisotropic

model, employs an adaptive mixture of multivariate normal distributions.

All of the aforementioned methods are not easily automated and either presume prior knowledge or are
computationally expensive. We propose a non-parametric and non-iterative approach for the systematic
detection of anisotropic correlations in spatial data based on two fundamental assumptions: (i) the SRF
samples are drawn from jointly normal or lognormal distributions and (ii) the SRF be statistically
homogeneous and differentiable. The proposed method determines the parameters of geometric anisotropy
by analyzing the expectations of sample based spatial derivatives along orthogonal directions and is of
order O(N) (for data on regular lattices) or at moS{ NV log, N) (for scattered data). The principal
directions are not assumed to be known in advance, but they are determined self-consistently from the
data. Once the anisotropy parameters are determined, it becomes possible to transform into a coordinate
system where the correlation function is isotropic, as illustrated in Fig. 1. The systematic anisotropy
detection can constitute a valuable pre-processing stage allowing for isotropic SRF signal processing

stages to follow.

The paper is organized as follows: In Section Il we introduce preliminary concepts and necessary
notation for modeling the anisotropy of scalar SRFs. In Section Il we present the Covariance Hessian
Identity (CHI) for jointly normal and differentiable SRFs. This leads to a nonlinear system of equations,
which can be used to infer the anisotropy parameters from the data. We also show that the anisotropy
parameters of an SRF with lognormal probability distribution are the same as those of its logarithm
(which is normally distributed). In Section IV we derive the closed form solution of the nonlinear system
of equations for the anisotropy parameters in two dimensions. Next, we apply the method to simulated
data on a square grid in Section V and to simulated data at scattered locations in Section VI. Finally, we

present our conclusions in Section VII.
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II. PRELIMINARY NOTIONS AND NOMENCLATURE

To illustrate preliminary notions, we begin by assuming R?, r;; = s; — s; the distance vector
and X (s) a scalar SRF on the probability spa@e, F, P)1. The SRF represents a physical variable of

interest, i.e., temperature, and the events constitute the observables of the SRF.

A. Ensemble Moments of First and Second Order

In general, a state (realization) of the SRF can be decomposed into a deterministientrend a

fluctuationx(s), and a noise term(s) according to [18]

X(s) = mx(s) + xa(s) +n(s)- (3)

The trend represents large-scale variations of the field, corresponding to the ensemble average [16],

mx(s) = (X(s)) (4)

with (-) denoting statistical expectation over the ensemble of states. The fluctuation models faster varia-
tions, which may appear as quasi-random changes, and have a cut-off sigtlermined by the spatial
resolution of the experiment. Any fluctuations that occur at smaller scales can not be resolved, and they
are incorporated with various other random perturbations in the noise term, which is modeled as a zero-
mean white Gaussian SRF. In the following, we assume that the trend is removed from the initial SRF,
and we will use the symbak (s) for the residual, i.e., the fluctuation and the noise components.

The spatial dependence of the SRF fluctuations is determined by means of the covariance function
or the structure function (semivariogram). In many cases, one can assume that the fluctuation is a Wide
Sense Stationary (WSS) SRF, or a SRF with WSS increments [23]. For WSS SRFs the structure function
(semivariogramyy, (r), defined a2+, (r) = (X (s) — X (s + r))2, contains the same information as the
covariancerx(r) = (X (s) X (s +r)). In practice the structure function is often estimated instead of the
covariance [15]. The structure function has a sill that is equal to the variahad the SRF, and the
following relation holdsy, (r) = o2 — ¢, (r) [23], [24].

An SRF X (s) has second-order stationary increments if the SR§) = X (s) — X (so) is WSS. Such

an SRF is also called intrinsic [25]. The category of intrinsic SRF's includes fractional Brownian motion

10 denotes the sample space (ensemble) that includes all the possible states (realizations) of fhésSREset of all the

observable eventd; C €2, and P(F') € [0, 1] is the probability associated with each event.
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[26]. In this case, the translation invariance of the covariance is lost. The structure function is still purely
a function of the space lag, but it increases without bound. One can investigate anisotropy in the intrinsic
SRFs by focusing on their increments, which are WSS.

The fluctuation SRF is isotropic if the covariance function depends purely on the magnitude of the
distance vector, i.egx(r) = c(||r||), where||r|| is the Euclidean norm of the vector An anisotropic
covariance function can be expressedcas) = ®(r"Ar), where A is a non-diagonal matrix. In the
system of the principal axeg (r') = @ (r'"A’r’), where A’ is diagonal. The local rate of change of
the covariance function along the principal directions is determined by respective correlation gngths
j = 1...,d. The anisotropy parameters of the SRF are a set of orientation (rotation) afiglgss
1,...,d,, that determine the orientation of the principal axesdidimensions, and the aspect vector
R1 = (1, Ry, - .-, Rqe1y) which represents the ratios of the principal correlation lengths=1,...,d
over & (chosen arbitrarily). Ind = 2 one rotation angle is sufficientl{, = 1), while in d = 3 three

Euler angles are necessary,(= 3).

B. On SRF Differentiability

The method that we propose for anisotropy detection relies on the estimation of expected values of
the partial SRF derivatives. L&; denote the unit vector in the spatial directioé = 1,...,d), and
9, X (s) = lima—o [X(s + a€;) — X(s)] /a denote the usual definition of the partial derivative (for a
given state with indexs). The SRFX is mean square differentiabliea D c R¢ if for every s € D and
sequence(s,,} such that||s, —s|| — 0 asn — oo, <\6iX(s) - 8iX(sn)]2> —0,Vi=1,...,d. In
particular, if the partial derivative8®c,(r)/dr? exist for all orthogonal directions=1,...,d atr =0
(whereO is the zero vector il dimensions) the SRF is differentiable in the mean square sense for every
s € R%. This paper focuses on multinormal and jointly lognormal SRFs. In these cases, mean square
differentiability implies that the derivatives of the sample states exist almost surely [15].

Differentiable covariance models include the Gaussian and thérNatass [27], [28], [29]. The latter
involves a parameter that controls the SRF smoothness. A Btat SRF is[v] — 1 times mean square
differentiable, wheré | is the lowest integer that is equal or higher thaiThe recently proposed Spartan
SRFs [30]-[32], provide another class of differentiable random fields with controlled smoothness. Their
differentiability is due to a band-limited spectrum that eliminates high frequency fluctuations [32].

For non-differentiable SRFs, one can distinguish three types based on the origin of the non-differentiability:
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(a) Due to a discontinuity of the covariance at the origiddditive white Gaussian noise (AWGN),
which is present in most spatial data sets, creates a covariance discontinuity at zero lag (in geostatistics
this is known as the nugget effect). This effect is manifested by a jump in the experimental structure
function at zero lag. The robustness of the CHI method to noise is investigated in Sectjbh Die

to discontinuity of the covariance derivatives at the origMany WSS covariance models used in
geostatistics are non-differentiable (e.g., the exponential, spherical, and logistic models). This effect is
due to the change in the slope of the covariance at zero lag, and it is milder than that induced by noise.
Selection of a non-differentiable model as optimal is based on parametric fits with the experimental
structure function and does not actually imply that the SRF from which the data are sampled is inherently
non-differentiable. Non-differentiability due to model selection is practically not a problem, since to date
flexible differentiable models (as mentioned above) are availdb)eDue to non-stationarity:Non-
stationary SRF’s with WSS increments, such as the fractional Brownian motion (fBm), have non-
differentiable covariance functions. In this case, one can apply the CHI to the SRF increments in

orthogonal directions, which are differentiable

I11. THE COVARIANCE HESSIANIDENTITY

A. Background

The method that we propose is based onG&ariance Hessian Identiiptroduced by Swerling [33].
The CHI links the second order derivatives of the covariance function (in directiand j), evaluated
at zero distance, to the mean value of the product of the first order field derivatives (in the respective
directions). We show that the covariance derivatives are explicitly expressed in terms of the correlation
lengths along the principal axes and the orientation angles. On the other hand, the mean value of the field
first order derivative products can be estimated by means of suitable sample averages assuming ergodic
conditions. In this manner, the anisotropy parameters are expressed in terms of equations that involve
sample averages. We solve the nonlinear equations explicitly in 2D, obtaining closed-form solutions
for the anisotropy aspect ratio and the orientation angle. Unless otherwise noted we use the Einstein

convention, which implies a summation over repeated indices on the same side of an equation.

2The CHI method focuses on short-range anisotropic correlations, while for fBm long-range properties are often the focus.
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If the covariance of the SRK(s) is differentiable, theCovariance Hessian MatribH (CHM) is
defined as follows
0?ce(r) . .
— =1,..
Or; Or;’ SR

Hii(r) = . d. (5)

For normal, stationary SRFs the existence and finiteness of the second order derivatives of the covari-
ance function at zero lag ensures the existence of the first order field derivatives [34]. We define the

tensor that represents tii@gradient Kronecker ProdudtGKP), X, with elementsX;;, as follows,
X = VX(s) @ VX (s) = 0: X (s) 9; X (s). (6)
We also define the expectatio, of the GKP,X, as

Swerling has proved in [33] the following equation, which we call@wvariance Hessian IdentiCHI):

Q = H(r)|r:0 . (8)

B. CHI Equations

Let us assume that the covariance function is anisotropic. In the following, we derive a relation between
the CHM in the original coordinate system, and the second-order derivative of the covariance function
expressed in an isotropic system of dimensionless coordinates.

Theorem 1: Let us assume thaK (s) is a differentiable, statistically homogeneous SRF with a
correlation function that exhibits geometric (elliptic) anisotropy. The CHig]i(O) in the principal
system is a diagonal tensor given by
%

dé&i&;

whereA ¢,(0) = Zle 9%24(0)/0r? is the Laplacian of the reduced isotropic covariance functigth)

Hi*j(h)’h:o = Aéx(o)a (9)

evaluated at zero lagThe functionc,(h) is obtained by rotation and rescaling of the axes. The vector
h is the lag in the rotated and rescaled system. T§eé; (i, = 1,...,d) are the correlation lengths
in the respective principal directions any; is the Kronecker delta, defined by; = 1, if : = 5 and
0i; = 0 for i # j.
Proof: It is assumed that the covariance function in the initial coordinate systegtiy wherer is

the lag vector in the initial system. Let the lag vectorrb@ the principal system, which is obtained from
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the initial by a rotation; in this system the covariance function becoth@s), so thatc (r') = cx(r).
The rotation matrix iSU(0), where@ is the vector of the rotation angles indimensions. The elements
of the rotation matrix aré/;; = dr;/0r;. Using the chain rule of differentiation af(r) we find

dex(r) 9 (x)) Or, I (x))
_ oar) o, oG\ 1
or; ory. Or; ory, Uki (10)

An additional differentiation leads to

0?cy (1) B 02c (r) (Bﬁ o 0%c (r')
Or; Or; N dry. Or; Or; ki = Or} Or]

Uk Ui;. (11)

We define the reduced isotropic covariargéh) = ¢ (r'), whereh is the dimensionless lag vector in
the rescaled coordinate system definedhby: (r] /&1, ..., 7)/&q). The functioné,(h) is isotropic with

respect toh. In the principal coordinate system, the CHM is given by

P(r) 9 [0(h)d]  Ohym O [0e(h) 1] 1 9%¢(h) (12)
87“; 37‘4,1 - 87“;” 8hl 87”; - 8T§n 8hm 8hl fl N fmfl 8h18hm
In order to evaluate the CHM at zero lag in the rescaled isotropic system, i.e.,
2~
iy (h) = LW (13)

s = G
one can use the spectral representation of the covariance. A more intuitive approach, which is valid in
any d, is as follows: due to the isotropy @f (h), H;;(0) is a diagonal matrix with equal elements in all
directions. Hence, it follows thalf;;(0) = 4;; Tr(H) /d, whereTr denotes the trace of a matrix. Based

on (13), it follows thatTr(H) = 3>% | H;;(0) = A&/(0). Thus, the CHM in the principal system is
indeed given by (9).

Equation (9) provides a closed-form expression for the CHM in the principal system, which can be
used to recast the CHI equations in a form that is explicit in the anisotropy parameters. Assuming that
the correlation lengths are non-zero in all directions, it follows from (9) that

& _ |Hj;(00)
& H3(0)

(13

ij=1,....d. (14)

Thus, one can definé — 1 aspect ratios for the correlation lengths as follows

o = =\ H4(0)

The vector of correlation aspect ratios, anchored to the first principal diretios; (1, Ry(1y, - - -, Rq1))

i=1,...d (15)

hasd — 1 independent components. Anchoring the aspect ratios on the lénggharbitrary. Based on
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(9) and (11), the CHM in the original system is given by

H;;(0) = Uyu(0)U;(0)Hy;(0) = —Uy(0) Uy;(0) MDA c«(0). (16)

Finally, in light of equation (8), the system of CHI equations is expressed as follows

R2
12(;) A&(0)Uy(0)U;(8) i,j=1,....d. (17)
1

Qij = —

The expressions (17) form a system of nonlinear equations that involve the components of the rotation
matrix U and the aspect ratio vect®; as unknown variables, which should be determined frontihe
Taking into account the symmetry of the mat€)x;, the number of independent equationsdigl + 1) /2.
The correlation lengtlf; and the Laplacian of the covariangeé,(0) are also unknown at this stage.
However, as shown below, they are not required for determining the anisotropy parameters. Instead, they

can be estimated at a later stage following the isotropic transformation.

C. Variance of the GKP Tensor

Let us define the shorthand notation for the partial field derivaiyés(s) = 0X (s)/ds;, and for the
GKP X;; = 0;X(s) 0; X (s). The CHI gives the mean value of the GKP, according to (8). The width of
the GKP distribution is measured by the square root of ¥ay). The latter can be evaluated explicitly
if X(s) is a Gaussian SRF.

Theorem 2 For a Gaussian, statistically homogeneous SRFs), the variance of the GKP tensor is

given by the following expressitin
Var(X;;) = Hii(0)H;;(0) + H;(0), i,j=1,....d. (18)
Proof: By definition
Var(Xyy) = (X2) = (Xy)" = ([0:X(s)[0;X(8)]”) — (0:X () 9; X (s))” (19)

Note that(0; X (s) 0; X (s)) = H;;(0). Sinced; X (s), i = 1,...,d are zero-mean, normally distributed
SRFs, we can apply the product-of-pairs decomposition property of central Gaussian moments to expand

the term([9; X (s)]? [0; X (s)]?) as follows:
(X)X = 2(0iX(s)0;X(5))” + ([0 X (9)]) (19, X (s)]%) (20)
3Summation is not implied over the indicésand j here.
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The first term on the right hand side is eqantHfj(O), and cancel§X;;)? thus completing the proof.
For normal, stationary SRF’s, the GKP is a tensorial SRF, and the normalized diagonal elements
X.i/v/2H;;(0) follow the x? distribution with one degree of freedom. Based on the above, the coefficient

of variation (COV) for the non-zero GKP elements becomes

COV(X;;) = \/ W +1 (21)
ij

The COMX;;) is always greater than unity, indicating high variability of the GKP.

D. Anisotropy of Lognormal SRF

Let us consider a jointly lognormal WSS SR¥(s). 4 Then, the SRFY (s) = log X (s) follows the
joint normal (multinormal) distribution. The mean and the covariance functions of the primary and the

logarithmic SRF are related by means of the equations:

My = emy+cy(0)/2, (22)
cx(r) =m? [ecym - 1] (23)

where
my = (Y(s)), mx=(X(s)) = ("®). (24)

Equations (22) and (23) follow both from tlemulant expansiofB85], [36]: Any random functionZ(s)

can be expressed as follows:

(@) =exp [ Culz(s)] [m] (25)

whereC,,[Z(s)] is the cumulant of ordem of the SRFZ(s). If Z(s) is a Gaussian SRF, only the first
two cumulants are non-zero, i.€1[Z(s)] = (Z(s)), C2[Z(s)] = (Z%(s)) — (Z(s))?. More specifically,
for my it holds thatZ(s) = Y (s), and thusC;[Y (s)] = my, C2[Y (s)] = ¢y(0), which in view of (25)
leads to (22). The definition of the covariance function,igr) = (X (s) X (s+r)) —m2, or equivalently
cx(r) = (Y)Y 40y 2 in this caseZ(s) = Y(s) 4+ Y (s + r) and the respective cumulants are

C1[Z(s)] = 2my, and C2[Z(s)] = 2¢y4(0) + 2¢4(r), thus leading to (23).

“In this section, we consider that, # 0, since the skewness of the lognormal distribution does not confer any advantages

on centered fluctuations.
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Theorem 3: Let Y(s) be a lognormal, WSS and differentiable SRF, and(s) = exp[Y (s)] denote
its lognormal counterpart. The CHMs of the two fields are related by means of the eqiihti@) =
pHy(0), wherep e R,

Proof: For a WSS, lognormal SRk, € Ry is constant. Hence, if the covariance functigir) is

differentiable, so is the covarianeg(r). It follows from (23) that

DPex(r) 2 9 [ecy(r) Ocy(r)] 2 o (@) [ﬁcy(r) Jcy(r) N d%cy(r)

87”1‘(97"3' N X 87“1' 87”j 87”2- 87"j (97"1'87“3'

(26)

Since ¢y (r) is differentiable, its first derivative vanishes at zero lag, where the maximum is attained

Jcy(r)/0r;|._, = 0. Hence, from (26) one obtains the equation
H, (0) = m?2e>(© H,(0). (27)

Equation (27) proves the theorem using- m3 exp(c?), whereo? = ¢, (0).

Theorem 4: The aspect ratio vectoR, ;) is identical with the vectoRyj).

Proof: The theorem follows directly from (15) and (27).

Theorems 3 and 4 ensure that the anisotropy parameters of the{&RFare identical to those of the
SRF Y (s). This implies that if the initial SREX (s) follows the lognormal distribution, its anisotropy

parameters can be determined from those of the normal SRR

IV. ESTIMATION OF ANISOTROPYPARAMETERS

First we consider the estimation of the anisotropy parameters in any dimehsioh This requires
solving the nonlinear equations (17), which is hindered by two factors: First, the right hand side of (17)
involves the parameter§ and A ¢,(0), which are not known in advance. Secondly, the expected GKP
Q is estimated from the sample by means(f which is most likely contaminated by noise and other

estimation errors (e.g., discretization effects).

A. Estimation of Anisotropy Parameters in Any Dimension

We assume without loss of generality th@t; is the GKP element with the maximum value. Then,
we cast the system of equations in terms of ratios of the CHM elemBpt&))/H11(0) — in which the

dependence of; and A ¢ (0) is eliminated — and the respective sample slope tensor r@ujgé@ll.
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To account for possible sampling or modeling errors, we allow for the paossibility of an imperfect match

between the CHM ratios and the respective sample slope tensor ratios by introducing the residual
Qij/Qu1 — Hij(0)/Hi1(0) = £45(6; Ry). (28)

The anisotropy parameters can then be determined by minimizing numerically the following nonlinear

functional A(8; R1) = 0,57, % (0; Ry), i.e,,

{6;:R1} = argmin A(6; Ry) (29)
G,Rl

The A(8;R,) is non-negative, and its global minimum (zero), is obtained when the residuals vanish.
This numerical approach is general and can be useful if an explicit solution for the anisotropy parameters
is not available (e.g., fod > 2.)

An alternative numerical approach is based on the diagonalization of the CHM, where the latter is
estimated from the sample by means@f Then, thed — 1 square roots of the eigenvalue ratios (e.g.,
with respect to the first eigenvalue) correspond the anisotropic ratios, while the orientation angles can be

obtained from the elements of the diagonalizing transformation matrix.

B. Estimation of Anisotropy Parameters in Two Dimensions

Based on (17), we derive expressions for the CHI equations that are valid in two dimensions. We then
solve the equations explicitly to obtain estimates of the anisotropy parameters. The rotationUnistrix
given by Uy = Uzp = cos) and Uy = —Uz; = sinf. The anisotropy ratio vector B = (1, Ry(y))-

The equations (17) are then expressed as follows

2 42
O = (’2; (cos 0+ B3y, sin?0) (30)

2 -2
Qo = UZQC (Rg(l) cos? § + sin? 9) (31)

1
2 -2
Q2 = Qa1 = OZQC [siné’cos 6(1 — Rg(l))} (32)
i

where( = %AEX(O) is an unknown parameter. The orientation of the principal axes is determined by
¢ and the aspect rati®, ). By dividing both sides of (31)-(32) by the terms on the respective sides of
(30) we obtain the following set of equations

. Qu B R%(l) + tan20

iag — = ; 33
Mee = QT T+ Ry, tan?0 (33)

)

March 20, 2008 DRAFT



14 IEEE TRANSACTIONS ON SIGNAL PROCESSING

109(0400)

Fig. 2. Dependence of the ratiQi.; on Ry(1) andd. The color scale corresponds lteg(qai.g) for enhanced level resolution.

L Qi tand(1- R ) (34
S Qu 1+ Rg(l) tan20’

qoff

wheref € [-7/2,7/2] and Ry € [0, 0).
It is straightforward to show that (33) and (34) are invariant under the transformatieh— —1/tan 6
and Ry(1) — 1/Ry(1). Equivalently, this means that;.g andq.s are invariant under the transformations
¢ — 0 £ /2 and Ry;y — 1/Ry1). Hence, the non-degenerate parameter space is definéd cy
[—7/2,7/2) and Ry(;y € [1,00). The degeneracy reflects the fact that an elliptical curve (i.e., an isolevel
covariance contour) is equivalent to an ellipse rotate@y with the orientation of the minor and major
axes interchanged. The dependencef, and ¢,¢ on the anisotropy parameters is shown in Figs. 2
and 3. Note thatgs,, is symmetrical, whileg.g is antisymmetrical around = 0.
The anisotropy parameters are the roots of the nonlinear system of equations (33) and (34), and they

can be expressed explicitly as follows

_ 1 -1 2qof
0 = 5 tan <1 — Qdiag> , (35)
1- Qdiag
R — 1+ . 36
20 \/ Qdiag — (1 + Qdiag) cos? 6 (36)

The solution forRy(y) is valid for all g4iag @and go. The solution ford is well defined provided that
Qdiag 7 1 @nd go # 0. FOr ggiag = 1 and gor = 0 one obtainsRky;) = 1 but § is indeterminate. This
result is meaningful since the cagg., = 1, ¢or = 0 corresponds to isotropic dependence, and thus no

preferred angle. This is obvious from equations (33) and (34), which are satisfied Byifafy ;) = 1.
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qoff

2(1\

Fig. 3. Dependence of the ratigs on Ry1y andd.

V. NUMERICAL RESULTS ONREGULAR SUPPORTS

Below we focus on the estimation of the anisotropy parameters from data distributed on rectangular
grids with dimensions (number of nodes per side}= L; x L. In practice, the true (unknown) values
of gaiag aNdg.gr are approximated by the sample estimatgs, andd.g. In view of (6) and (7), the latter
require estimates of the GKR, which involves the calculation of numerical derivatives. The estimates
6 and Rg(l) for the anisotropy parameters are then obtained from (35) and (36) by replagipgnd
gofr With their sample estimates. Using either centered differences or Savitzky Golay (SG) differentiation
filters [37], [38] to estimate the partial derivatives, the algorithmic complexity of the method /s).

We use the discrete spectral method (Fourier filtering method) [39], [40] to generate anisotropic
random fields with Gaussian, and Mat (v = 2, 3,5) covariance models. On regular grids this method
takes advantage of the computational efficiency of the Fast Fourier Transform (FFT). Fig. 4 shows
realizations of these fields with anisotropic rafiy ;) = 2 and rotation anglé = 20° on a regular
square lattice with, = 512 nodes per side and the smallest correlation lengih, = min(;, &2), given
by &min = {4,2,1.5, 1} respectively. The derivations of the anisotropic power spectral density for SRFs
with Gaussian and Métn correlations are given in the Appendix. Unless otherwise noted, in this section
we use square grids with = 512 sites per side and the covariance models with the correlation lengths
specified above. In addition, the mean estimates and the errors presented are based on an ensemble of

100 independent realizations from a multivariate normal distribution with the specified covariance model.
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Matérn,v = 3 Matéern,v =5

Fig. 4. Realizations of SRF with correlations lengths. = {4, 2, 1.5, 1} for respectively the Gaussian, Mahv = 2, Matérn

v =3, and Maérnv = 5 covariance models and anisotropy paramefeys) = 2 and6 = 20°.

We estimate the anisotropy parameters for SRF realizations that correspond to the following cases:
Ro(1y ={0.3,0.5,0.7,1,1.5,2,3,5}, 0 = 20° and Ry(y) = 2, § = {—45,—30,—15,0.1,15,30,45}°. The
mean values of the estimates are presented in Tables | and fBQf@f and § respectively. First, the
angled is estimated from (35) using the sample based estimatgs gor; the angled is used in (36)

to estimate the anisotropic ratio. In both cases, the errors are reduced as the degree of differentiability
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TABLE |

TRUE (FIRST COLUMN) AND ESTIMATED VALUES OF R2(1> FOR VARIOUS COVARIANCE MODELS

Ry;y Gaussian Mdétrmmy =2 Materny =3  Matérny =5
0.3 0.3104 0.3259 0.3161 0.3136
0.5 0.5135 0.5290 0.5195 0.5172
0.7 0.7125 0.7242 0.7172 0.7156

1 0.9994 0.9991 0.9991 0.9993
1.5 1.4693 1.4416 1.4576 1.4618
2 1.9434 1.8851 1.9195 1.9289
3 2.8920 2.7612 2.8394 2.8625
5 4.7624 4.4200 4.6220 4.6916
[ —
— Gaussian '

RELATIVE MA ERROR OF R2(1) ESTIMATE

0.1H & Matern v=2| ST SRR
-©-Matern v=3| :

0.08f

-4~ Maternv=5| : s

Fig. 5. Relative mean absolute errori8f,, versus the trug,;, for SRFs with Gaussian and Man (- = 2, 3, 5) correlations

(0 = 20°, &min = 4,2,1.5,1 respectively) on a squarel2 x 512 grid.

increases. In Figs. 5 and 6 we illustrate the relative Mean Absolute (RMA) errd%zf@; and the MA

error for §. Smoother covariances lead to smaller errors. The RMA in all the cases studied is less than

10% for Ry € [0.3,3]. The MA error off is low (less thare® for all cases studied); it appears to be

almost symmetrical aroun@ = 0°, where, as well as & = +45°, it reaches a minimum. In the case of

Gaussian correlation, the MA error is lower th&h

The curves in Fig. 5 are asymmetric arouRid;) = 1, due tof # 45°. Note thatRy) is un-

March 20, 2008
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TABLE I
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TRUE (FIRST COLUMN) AND ESTIMATED VALUES OF # FOR VARIOUS COVARIANCE MODELS

fin° Gaussian Md@mny=2 Matrny=3 Maternyv=5
—45  —45.0002 —44.9999 —45.0001 —44.9999
—-30  —30.9210 —31.6937 —31.2442 —31.1469
—15 —15.9282 —16.7110 —16.2460 —16.1569
0.1 0.1576 0.1911 0.1837 0.1693
10 10.7704 11.3942 11.0419 10.9560
20 21.1279 22.0469 21.5233 21.4004
30 30.9658 31.7536 31.3953 31.1985
45 45.0000 45.0001 45.0000 44.9996

N

P
ul

[y

o
ol

, | —— Gaussian
/| -8~ Matern v=2 [\s7
-©-Matern v=3
-4~ Matern v=5

MEAN ERROR OF 6 ESTIMATE (DEGREES)

-20

0
6 IN DEGREES

20

Fig. 6. Mean absolute error &f versus the tru@ for SRFs with Gaussian and Mah (v = 2, 3, 5) correlations Ry =2,

&min = 4,2,1.5,1 respectively) on a squargl2 x 512 grid.

derestimated (overestimated) as its true value increases above (drops below) unity (cf. Table I). This

“compression” of the estimatef, ;) is due to the limited grid resolution and sample size. This effect

highlights the contradicting requirements for keeping the grid size large as compared to the correlation

lengths in order to ensure ergodicity [23], while keeping all correlation lengths larger than the grid

step in order to resolve the correlation. These two requirements can be summari%}‘gga% > 1
CEhad]
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—Gaussian | : -
0.05H B~ Matern v=2 et
-©-Matern v=3| : : .
-4~ Matern v=5| : VA

RELATIVE MA ERROR OF R2(1) ESTIMATE
o
o
o)

Fig. 7. Relative mean absolute erroréﬁ(l) versus the trugRy 1y on a512 x 512 square grid. SG filtering (p=5, W=7) is

used.

and % > 1. When Ry1) > 1 or Ry;) < 1, it is not possible to simultaneously satisfy both
requirements, unless the sample size is substantially increased.

The estimatesl%g(l) andé are quite accurate on the grid. It is also observed that the accuracy increases
for smoother fields that admit higher order derivatives. If SG filtering (with polynomial grée and
window size2W + 1, W = 7) is employed the error is considerably reduced as shown in Fig. 7. The
above numerical results demonstrate the efficiency of the proposed method for anisotropy parameters
identification in the case of differentiable normal fields on a regular grid. The average CPU time for the
estimation of the anisotropic parameters &2 x 512 square grids iscpy ~ 0.06 sec using centered
differences andcpy ~ 2.7 sec using SG differentiatioh.

In Fig. 8 we investigate the impact of the grid size]é)ﬂl). We use Gaussian, and Man (v = 2,3, 5)
anisotropic covariance models witk, ;) = 2 on square grids of length = 27, p = 6,...,11 per side.
The RMA of Rg(l) declines asymptotically ak increases and the ergodic condition tends to be satisfied.

Finally, we investigate the effect of zero-mean AWGN on an SRF field. We characterize the intensity
of the noise by the signal to noise ratio (SNR), i.e., the ratio of the SRF variance to the noise variance.

We generate SRF realizations with,;, = 4, to which we add zero-mean AWGN so thalNR =

5The CPU times reported are averages over 100 realizations. They were obtained on a desktop with an Iat65636@
processor, running Matlgb7.3 under the Windows XP OS (service pack 2). The simulations use less than 600 MB from the

3.24 GB RAM.
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“|—caussian
= | = Matern v=2}

- |- -Matern v=3}
| ¢ Matern v=5§

0.1}
0.08} -

0.06} -

0.04f+

RELATIVE MA ERROR OF R2(1) ESTIMATE

GRID LENGTH (L)

Fig. 8. Relative mean absolute error]éi(l) versus the grid length per sidefor SRFs with Gaussian and Mah ¢ = 2, 3, 5)

correlations § = 20°, {min = 4, 2, 1.5, 1 respectively). The scale of the horizontal axis is logarithmic.

®-SNR=30dB |
-~ SNR=20 dB |
"3'| - SNR=10dB |

RELATIVE MA ERROR OF R2(1) ESTIMATE

Fig. 9. Relative mean absolute errorBE(l) versus the truek, ;) for different levels of zero-mean AWGN added to an SRF
with Gaussian correlationg,(:n = 10, § = 20°) on a512 x 512 square grid. The SG differentiator (p=5, W=11) is used. The

scale of the vertical axis is logarithmic.

{inf, 30,20, 10} dB. We use SG filtering (with polynomial order= 5 and window siz€W+1, W = 11)

to reduce the impact of noise on the derivatives estimation. The results are presented in Fig. 9. For
SNR > 30 dB, the anisotropy parameters are accurately estimated (RMA lessl@¥@nin the entire

range ofRz(l) considered, while fo30 > SNR > 20 dB the RMA of the extreme anisotropic ratios
does not excee@0%. For lower SNR values the range of accurately estimated anisotropic ratios is

progressively reduced.
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VI. NUMERICAL RESULTS ONIRREGULAR SUPPORTS

In a number of applications, particularly in the field of geostatistics, the SRF is sampled on an irregular
grid. As a result, the evaluation of the field’s partial derivatives is not straightforward. In such cases, the
results presented in this section indicate that it is preferable to interpolate the data on a regular lattice
before estimating the anisotropy parameters. The choice of the above interpolator relies on the following
desirable characteristics: (i) the interpolator should be kept simple in the framework of a pre-processing
stage and (ii) the induced inaccuracies in estimating field partial derivatives should not introduce “too
large” deviations in anisotropy parameters estimation. Another option that we investigate is the direct

application (i.e., omitting grid interpolation) of SG filters on scattered data (henceforth, scattered SG).

In the following, we compare the performance of simple interpolators, namely linear, cubic spline,
nearest neighbors and the biharmonic spline interpolator [41] followed by a differentiator (either em-
ploying centered differences or an SG filter) to the evaluation of the partial derivatives using scattered
SG filters. The biharmonic spline interpolator relies on the minimum curvature principle, while the
interpolated field is a linear combination of Green’s functions centered on each data point. The weights
of the relevant Green’s functions are obtained by solving a linear system of equaiioNg, The
algorithm is unstable in the case of very proximate sampling points. This problem can be overcome by
introducing a critical distance (typically a percentile of the point-to-point distance distribution), below
which sampling points are considered identical and the respective field values are averaged. The numerical
complexity increases t®(N log, V), while the use of scattered SG filters requit@&V?) operations.

If the numerical complexity is not an issue, more elaborate interpolators based on kriging or Wiener

filtering [27] could be employed.

We use the Fourier filtering method to generate SRFs with Gaussian correlations for the following
combinations of anisotropy parameters: {t};) = {0.3,0.5,0.7,1,1.5,2,3} and ¢ = 20° and (ii)
Ry1y = 2 and ) = {—45,-30,-15,0.1,15,30,45}° on square lattices of sizé x L, where L = 256.
These fields are then randomly sampledvat= 4096 points and interpolated over a regular lattice of size
L, x L., whereL, = 64 using linear, cubic spline, nearest neighbor and biharmonic spline interpolation.
The relative RMA error in estimating,(;) and the MA error in estimating using a centered differences
differentiator are presented in Figs. 10 and 11 respectively. The plots confirm that the biharmonic spline

interpolator outperforms the other three interpolators. The RMA errﬁﬁgﬁ is higher than the respective
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RELATIVE MA ERROR OF Rz(l) ESTIMATE

Fig. 10. Relative mean absolute errorléi(l) versus the trugk, (1) using four different interpolation algorithms (linear, cubic,
nearest neighbor and biharmonic spline). The samples codt@i values of an SRF with Gaussian correlatiofs:f = 8,

0 = 20°), randomly selected from 256 x 256 grid.

45 ——Linear
= Cubic
4 -©-Nnb
35 -:-0-‘B|h. sphr}e

(%)
~

=
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MA ERROR OF 6 ESTIMATE (DEGREES)
N
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Fig. 11. Mean absolute error of (in degrees) versus the trdeusing four different interpolation algorithms (linear, cubic,
nearest neighbor and biharmonic spline). The samples contg values of an SRF with Gaussian correlatio§sif = 8,

Ry1y = 2), randomly selected from 256 x 256 grid.

values on the grid (cf. Fig. 5). This loss in accuracy is inevitable due to the irregular sampling point
distribution and, most significantly, the considerable loss of information due to samplingwoithy of

the field values. The estimation of the rotation angle remains quite satisfactory. We also compare the
RQ(l) estimates for Gaussian and Mat SRFs using the biharmonic spline interpolator. The RMA error

of Rg(l) is shown in Fig. 12. In agreement with the regular grid case, the estimates are more accurate

for SRFs that admit higher order derivatives.
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' —— Gaussian : : .
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#
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R

Fig. 12. Relative mean absolute error E&m versus the trueR,(;y for SRFs with Gaussian and Mah (¢ = 2,3, 5)
correlations € = 20°, &min = 8,4, 3,2 respectively). The samples contalfi96 values randomly selected from2%56 x 256

grid and interpolated on é4 x 64 grid using the biharmonic spline.

Next, to improve the estimates we use SG smoothing in two ways: First, the scattered data are
interpolated on the grid (as described above) and then SG filters5, W = 7) are used to estimate
the derivatives. The algorithmic complexity of this method is al¥aV log, V). Secondly, the filter is
imposed directly on the scattered data (without interpolation). In this case, a 2D window that depends
on the sampling point distribution is specified. We consider a third degree polyngmial J), and
around each point, a neighborhood that includes the ne#&astighbors. This increases the algorithmic
complexity to O(N?). The results obtained are compared in Figs. 13-14. The computational cost of
the operations required to estimate the anisotropic parameters plotted above is relatively small. The CPU
time tcpy required for the estimation of the anisotropy parameters per sampletigp(i)~ 0.15 sec for
interpolation (linear, cubic, and nearest neighbor methods) followed by SG differentiatian;p(iir 14
sec if the biharmonic spline interpolator is used; (fipuy =~ 23 sec for direct application of the SG to

the scattered data.

VIlI. CONCLUSIONS

In this paper we present a hon-parametric, systematic approach for the identification of elliptic anisotropy
parameters of statistically homogeneous, differentiable, jointly normal or lognormal SRFs, focusing in
the 2D case. The method is based on the Covariance Hessian ldentity (CHI). It involves the evaluation

of field partial derivatives in orthogonal directions, and their relation through closed form expressions, to
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Fig. 13. Relative MA error oﬂ?g(l) for irregularly sampled SRFs with Gaussian correlations using SG differentiation for SRFs
with Gaussian correlation®) (= 20°, &min = 4). The samples contaii096 values randomly selected from2%6 x 256 grid.
For four of the plots the samples are first interpolated @l & 64 grid using different interpolators (nearest neighbor, linear,

cubic, biharmonic spline) and the sample derivatives are based on SG filtering. For the fifth plot (0) the scattered SG method
is used without interpolation.

0.6R i —— Gaussian

: : : © |~ Matern v=5
... |-©-Matern v=3||
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RELATIVE MA ERROR OF R2(1) ESTIMATE

Fig. 14. Relative MA error ofl%g(l) for irregularly sampled SRFs with Gaussian and dfat@ = 2, 3,5) correlations. The
samples contaid096 values randomly selected from2%6 x 256 grid. The samples are first interpolated o4 x 64 grid

using the biharmonic spline interpolator and the sample derivatives are estimated based on SG filtering (p=5, W=7).

the anisotropy ratio and the rotation angle. For anisotropic ratios in the fafge], it is the only robust
and computationally efficient non-parametric method available for anisotropy identification in spatial data.
On regular grids, the method’s algorithmic complexity is linear to the sample @iZ€). The accuracy

of the method is very good provided that ergodic conditions are respected. The accuracy can be further
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improved using Savitzky Golay differentiation, at a small computational cost.

The CHI approach is tested on simulated data on regular grids. In general, the accuracy of the anisotropy
estimates increases with the smoothness of the SRF realizations. For SRFs with Gaussian correlations, the
RMA error in the anisotropy ratio estimation can be lower thd# for moderate grid sizes (i.28 x 128)
even for Ry(;) significantly different from unity. Use of the centered differences approximation for the
derivatives allows very fast estimates of the anisotropy. If the data are contaminated by uncorrelated noise,
or if higher accuracy is in general desired, Savitzky Golay differentiators can improve the estimation of the
anisotropy parameters. The impact of zero-mean AWGN components is found negligiBi¥Ror 20,
dB but it becomes significant for lower SNRs.

The method is extended for application on scattered data. Two approaches are investigated. In the
first approach, a simple interpolator is used to obtain field estimates on a regular grid. The derivatives
of the interpolated field are then evaluated by means of either centered differences or SG filters. The
best accuracy in thdi,) estimates is obtained with the biharmonic spline interpolator. However, the
numerical complexity increases (N log, N). Other interpolators (linear, cubic, nearest neighbor) are
significantly faster but they give reduced accuracy. In the second approach, the SG filter is directly applied
to the scattered data. This approach is considerably slower, but the obtained MA erfoaseirmore
uniform and their maximum is reduced. Overall, the estimation accuracy depends on the sampling density
and configuration. The accuracy reduction is due to the information loss resulting from the disorder and
the rarefication of the sampled pattern. In all cases, the method’s accuracy improves as the ratios of
the domain to the correlation length, and of the correlation length over the lattice step (or the average
minimum distance between sampling points) increase.

Future research should address the application of more elaborate denoising techniques to lattice data.
Finally, in the case of non-differentiable SRFs it would be worth investigating the development of a
differentiability test, and the application of a smoothing kernel to restore differentiability with minimal

impact on the anisotropic structure of the correlations at larger scale.
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APPENDIX

To use the spectral method for anisotropic SRF simulation, closed form expressions for the power
spectral densities are needed. The dimensionlesshlagsd h- in the transformed isotropic coordinate

system can be expressed in relation to the sampling axes systemas follows:

0 sin 6
=20+ 00, @37
&1 &1
sin 6 cosf
hy = — r+ ——ro. 38
2 & 1 2 2 (38)

The Euclidean distancgh|| is thus expressed in terms of the original distance (r;,72) as follows:

Ih|[* = Ar{+ Aori + Arariry (39)
where, (40)

Ay = & %(cos’> 0+ R ?sin?0) (41)
Ay = 5{2(sin2 6+ R 2cos? ) (42)
Ay = —251_2 sinfcos(R™2 —1). (43)

The Gaussiangg(r1,m2) and the Maérn, cjs(r1, r2) correlation functions are expressed as follows:

cg(ri,re) = exp(—Hth) = exp [—(Alr% + Agr% + A12T17”2)] , (44)
em(r,re) = 27T (w) |[h]]” K, (||h]) = 2T~ ()
X \/(Al T% + Ay T% + Aiam TQ)VK,, (\/Aﬁ“% + AQT% + A127’17”2> , (45)

where K, (-) is the modified Bessel function of the second kind and ordend I'(-) is the Gamma
function.
The respective power spectral densitiég:;, k2) can be evaluated from the Fourier transform of the

correlation functionc(ry,r2) expressed as in (44) or (45) according to the correlation type:
C(ky,ka) = / / c(rl,rg)e_jkme_jk27"2dr1dr2. (46)
For the evaluation of (46), we use the inverse of the transformations (37) and (38):

r1 = hi&cosl — halosind = &1 (hy cosf — ha Rsin f) 47)

ro = h1&1sinf + ho&scosf = £I(h1 sin @ + ho R cos 9) (48)
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The Jacobian of this transformation is

8(7"1,7“2)

_ 2
Blhy )|~ REy. (49)

1J1| =

In light of the above, the spectrum is expressed in terms of the correlation furi¢tipn,) in the

isotropic system as follows:
C(ky, ko) =|J1 / / &(hy, hy) e~ Uhikitihaka) gy dpy (50)
wherek = (ky, k) is the wave-vector in the isotropic system, and

kl = fl(kl cosf + kg sin 9), (51)

ko = §1R<—k1 sin 6 + k9 cos 9) (52)

A. Gaussian Correlation

In the case of a Gaussian correlation function, equation (50) becomes:

Clk, ko) = |Tn| /OO /Og(h§+h§+jh1121+jh21?:2)dh1dh2 — g2 Re0B(RHR) (53)

Clki,ky) = me2Re 025(Giki+Gaki+Guzkika) (54)
where

G1 = €3(cos?f+ R%sin’0) (55)

Gy = &X(sin® 6+ R?cos? 0) (56)

Gia = 2¢¥sinfcosf(1 — R?) (57)

B. Matrn Correlation
In the case of the Matn correlation, equation (50) becomes:
Cliks) = 0l [ [ P Kol exp(—jibs - jhak) dhadhs, (58)

wherec) = ¢o2!"*T~!(v) and J; is given by (49). Changing to polar coordinates= (k,¢) where
h = ||h||, the hy and hy are expressed ds; = hcos ¢ and hy = hsin ¢. Finally, using the Jacobian of

the transformationlJ;| = b, it follows that

00 2w - -
C(ki,k2) = coldil / / RV LK, (h) e~ Ih(eos kutsinhz) qgqp, (59)
0 0
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The angle integral leads tf’™ dg e ih(coséhtsinéka) — or Jo (hy /K2 + k2), where J, is the Bessel

function of the first kind and order zero. Hence, &, k2) is given by the followingHankel transform

C(ki,ky) = 2mch|h / R K, (R) Jo(hy/ k2 + k2)dh. (60)
(k1, k2) oHO (h) Jo(hy/ kf + K3)
This Hankel transform is evaluated explicitly using [42]

2 [ hv ! Ky(h)Jo(hﬁ)F(z/—i—l)Q”“W. (61)

Hence, we finally obtain

Co(v)
(14 G1k? + Gok2 + Giokiko)V 1’

C(ki,k2) = (62)

whereCy(v) is a function ofv and the variance of the SRF.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
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