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Non-parametric Identification of Anisotropic

(Elliptic) Correlations in Spatially Distributed

Data Sets

Arsenia Chorti§ and Dionissios T. Hristopulos∗

Abstract

Random fields are useful models of spatially variable quantities, such as those occurring in en-

vironmental processes and medical imaging. The fluctuations obtained in most natural data sets are

typically anisotropic. The parameters of anisotropy are often determined from the data by means of

empirical methods or the computationally expensive method of maximum likelihood. In this paper we

propose a systematic method for the identification of geometric (elliptic) anisotropy parameters of scalar

fields. The proposed method is computationally efficient, non-parametric, non-iterative, and it applies

to differentiable random fields with normal or lognormal probability density functions. Our approach

uses sample based estimates of the random field spatial derivatives that we relate through closed form

expressions to the anisotropy parameters. This paper focuses on two spatial dimensions. We investigate

the performance of the method on synthetic samples with Gaussian and Matérn correlations, both on

regular and irregular lattices. The systematic anisotropy detection provides an important pre-processing

stage of the data. Knowledge of the anisotropy parameters, followed by suitable rotation and rescaling

transformations restores isotropy thus allowing classical interpolation and signal processing methods to

be applied.
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I. I NTRODUCTION

The efficient stochastic modeling of multi-dimensional data is at the epicenter of geophysical, infor-

mational and environmental sciences as well as image processing and even transistor circuit design

methodologies [1]. Spatial statistics provides important tools for modeling the underlying processes

in a variety of applications, using classical correlation methods [2] or semivariograms [3] and spatial

interpolation based on kriging [4], [5] and Wiener filtering [6], [7] methods. In recent years, there is also

a growing interest in spatio-temporal variogram and covariance models [8]. Furthermore, over the past

few years variogram methods have been introduced in image processing applications such as medical

imaging [9], [10], [11], [12] and brain mapping [13], [14].

Most signal processing methods are based on the assumption that the Spatial Random Fields (SRFs) are

statistically homogeneous and isotropic. Statistical homogeneity implies that the SRF correlation function

depends only on the lag vector between two points, but not on their exact location [15]. Statistical isotropy

implies that the correlation function depends purely on the Euclidean distance, but not on the direction

of the lag vector, i.e., that the correlation lengths are equal along every direction [16]. The assumption

of isotropy generally fails in natural SRFs. Spatial data often exhibit continuity properties that depend

on the direction in space.

Two types of anisotropy are usually considered in geostatistical studies: (i) geometric anisotropy [17]

(also known as elliptic or range anisotropy) implies that the correlation iso-level contours are ellipses (in

2D) or ellipsoids (in 3D), (ii) zonal anisotropy implies a direction dependent variogram sill. The focus

of this paper is on geometric anisotropy in two spatial dimensions (called anisotropy hereon).

Determining the parameters of anisotropy allows a coordinate system transformation that renders the

spatial dependence statistically isotropic in the new system (i.e. the iso-level contours become circles).

The geometric anisotropy in a given 2D sampling coordinate system of axesx andy is fully characterized

by the anisotropy ratioR and the orientation angleθ. R represents the ratio of the correlation lengths

along the principal axes of anisotropy (i.e. it is the ratio of the semi-axes of the elliptical iso-level

contours) andθ is the rotation angle between the principal coordinates system and the sampling system.

The isotropic transformations in spatial data are depicted in Fig. 1.

The principal system of axes is first aligned with the sampling coordinate system by rotation. Following
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Fig. 1. Isotropic transformations in two dimensions.

that, the rotated principal coordinate system is rescaled so that we obtain an isotropic coordinate system in

which iso-level correlation contours become circles. The coordinates in the rotated and rescaled isotropic

principal coordinate system are expressed as follows, in relation to the initial sampling coordinate system:

ũ = x cos θ + y sin θ (1)

ṽ = (−x sin θ + y cos θ) R (2)

Empirical estimates of geometric anisotropy are based on the visual inspection of geological maps or

the estimation of the experimental directional variograms (structure functions). The latter are estimated

along the principal directions, if these are known a priori (not a typical case), or arbitrarily in the

North-South and East-West directions, or in multiple defined directions) [18], [17]. The estimation of

directional variograms is an operation with numerical complexityO(N2) and requires making empirical

choices pertaining to discretization (i.e., the number of radial distance and orientation angle classes).

In addition, fitting of the directional variograms to a parametric model can be conducted by means of

various methods, and the choice influences the anisotropy estimation.

An alternative approach for the evaluation of the anisotropy parameters of spatial data is based on

maximum likelihood estimation (MLE) [19]–[21], which presumes a given parametric correlation model.

The MLE seeks optimal parameters (in 2D these involve the variance, correlation length, anisotropic

ratio, and orientation angle) for this model. This task is computationally greedy, since for every iteration

of the optimization algorithm the covariance matrix of the data is calculated and inverted. This procedure

has to be repeated for all possible correlation models before the ML estimator determines the most likely

one. The number of iterations and the accuracy of the MLE estimates depend crucially on the initial

guesses of the inferred parameters.
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Another method for the estimation of geometric anisotropy is the Bayesian updating method presented

in [22]. In this approach, the posterior distribution of the anisotropy parameters is sampled using (i) a

prior distribution and (ii) a noniterative importance-sampling Monte Carlo method with an approximating

importance sampling density. The prior distribution employed in [22] was based on information from

earlier years. The importance sampling density, used to approximate the likelihood of the anisotropic

model, employs an adaptive mixture of multivariate normal distributions.

All of the aforementioned methods are not easily automated and either presume prior knowledge or are

computationally expensive. We propose a non-parametric and non-iterative approach for the systematic

detection of anisotropic correlations in spatial data based on two fundamental assumptions: (i) the SRF

samples are drawn from jointly normal or lognormal distributions and (ii) the SRF be statistically

homogeneous and differentiable. The proposed method determines the parameters of geometric anisotropy

by analyzing the expectations of sample based spatial derivatives along orthogonal directions and is of

order O(N) (for data on regular lattices) or at mostO(N log2 N) (for scattered data). The principal

directions are not assumed to be known in advance, but they are determined self-consistently from the

data. Once the anisotropy parameters are determined, it becomes possible to transform into a coordinate

system where the correlation function is isotropic, as illustrated in Fig. 1. The systematic anisotropy

detection can constitute a valuable pre-processing stage allowing for isotropic SRF signal processing

stages to follow.

The paper is organized as follows: In Section II we introduce preliminary concepts and necessary

notation for modeling the anisotropy of scalar SRFs. In Section III we present the Covariance Hessian

Identity (CHI) for jointly normal and differentiable SRFs. This leads to a nonlinear system of equations,

which can be used to infer the anisotropy parameters from the data. We also show that the anisotropy

parameters of an SRF with lognormal probability distribution are the same as those of its logarithm

(which is normally distributed). In Section IV we derive the closed form solution of the nonlinear system

of equations for the anisotropy parameters in two dimensions. Next, we apply the method to simulated

data on a square grid in Section V and to simulated data at scattered locations in Section VI. Finally, we

present our conclusions in Section VII.
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II. PRELIMINARY NOTIONS AND NOMENCLATURE

To illustrate preliminary notions, we begin by assumings ∈ Rd, rij = si − sj the distance vector

and X(s) a scalar SRF on the probability space(Ω, F, P )1. The SRF represents a physical variable of

interest, i.e., temperature, and the events constitute the observables of the SRF.

A. Ensemble Moments of First and Second Order

In general, a state (realization) of the SRF can be decomposed into a deterministic trendmx(s), a

fluctuationχλ(s), and a noise termη(s) according to [18]

X(s) = mx(s) + χλ(s) + η(s). (3)

The trend represents large-scale variations of the field, corresponding to the ensemble average [16],

mx(s) = 〈X(s)〉 (4)

with 〈·〉 denoting statistical expectation over the ensemble of states. The fluctuation models faster varia-

tions, which may appear as quasi-random changes, and have a cut-off scaleλ determined by the spatial

resolution of the experiment. Any fluctuations that occur at smaller scales can not be resolved, and they

are incorporated with various other random perturbations in the noise term, which is modeled as a zero-

mean white Gaussian SRF. In the following, we assume that the trend is removed from the initial SRF,

and we will use the symbolX(s) for the residual, i.e., the fluctuation and the noise components.

The spatial dependence of the SRF fluctuations is determined by means of the covariance function

or the structure function (semivariogram). In many cases, one can assume that the fluctuation is a Wide

Sense Stationary (WSS) SRF, or a SRF with WSS increments [23]. For WSS SRFs the structure function

(semivariogram)γx(r), defined as2γx(r) = 〈X(s)−X(s + r)〉2, contains the same information as the

covariancecx(r) = 〈X(s) X(s + r)〉. In practice the structure function is often estimated instead of the

covariance [15]. The structure function has a sill that is equal to the varianceσ2
x of the SRF, and the

following relation holdsγx(r) = σ2
x − cx(r) [23], [24].

An SRFX(s) has second-order stationary increments if the SRFΨ(s) = X(s)−X(s0) is WSS. Such

an SRF is also called intrinsic [25]. The category of intrinsic SRF’s includes fractional Brownian motion

1Ω denotes the sample space (ensemble) that includes all the possible states (realizations) of the SRF,F is the set of all the

observable events,F ⊂ Ω, andP (F ) ∈ [0, 1] is the probability associated with each event.
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[26]. In this case, the translation invariance of the covariance is lost. The structure function is still purely

a function of the space lag, but it increases without bound. One can investigate anisotropy in the intrinsic

SRFs by focusing on their increments, which are WSS.

The fluctuation SRF is isotropic if the covariance function depends purely on the magnitude of the

distance vector, i.e.,cx(r) = cx(‖r‖), where‖r‖ is the Euclidean norm of the vectorr. An anisotropic

covariance function can be expressed ascx(r) = Φ(rTAr), whereA is a non-diagonal matrix. In the

system of the principal axesc′x(r′) = Φ′(r′TA′r′), whereA′ is diagonal. The local rate of change of

the covariance function along the principal directions is determined by respective correlation lengthsξj ,

j = 1 . . . , d. The anisotropy parameters of the SRF are a set of orientation (rotation) angles,θj , j =

1, . . . , dm that determine the orientation of the principal axes ind dimensions, and the aspect vector

R1 = (1, R2(1), . . . , Rd(1)) which represents the ratios of the principal correlation lengthsξj , j = 1, . . . , d

over ξ1 (chosen arbitrarily). Ind = 2 one rotation angle is sufficient (dm = 1), while in d = 3 three

Euler angles are necessary (dm = 3).

B. On SRF Differentiability

The method that we propose for anisotropy detection relies on the estimation of expected values of

the partial SRF derivatives. Let~ei denote the unit vector in the spatial directioni (i = 1, . . . , d), and

∂iX(s) = limα→0 [X(s + α~ei)−X(s)]
/
α denote the usual definition of the partial derivative (for a

given state with indexω). The SRFX is mean square differentiablein D ⊂ Rd if for every s ∈ D and

sequence{sn} such that‖sn − s‖ → 0 as n → ∞,
〈∣∣∂iX(s) − ∂iX(sn)

∣∣2
〉
→ 0, ∀i = 1, . . . , d. In

particular, if the partial derivatives∂2cx(r)/∂r2
i exist for all orthogonal directionsi = 1, . . . , d at r = 0

(where0 is the zero vector ind dimensions) the SRF is differentiable in the mean square sense for every

s ∈ Rd. This paper focuses on multinormal and jointly lognormal SRFs. In these cases, mean square

differentiability implies that the derivatives of the sample states exist almost surely [15].

Differentiable covariance models include the Gaussian and the Matérn class [27], [28], [29]. The latter

involves a parameterν that controls the SRF smoothness. A Matérn SRF isdνe − 1 times mean square

differentiable, wheredνe is the lowest integer that is equal or higher thanν. The recently proposed Spartan

SRFs [30]–[32], provide another class of differentiable random fields with controlled smoothness. Their

differentiability is due to a band-limited spectrum that eliminates high frequency fluctuations [32].

For non-differentiable SRFs, one can distinguish three types based on the origin of the non-differentiability:
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(a) Due to a discontinuity of the covariance at the origin:Additive white Gaussian noise (AWGN),

which is present in most spatial data sets, creates a covariance discontinuity at zero lag (in geostatistics

this is known as the nugget effect). This effect is manifested by a jump in the experimental structure

function at zero lag. The robustness of the CHI method to noise is investigated in Section V.(b) Due

to discontinuity of the covariance derivatives at the origin:Many WSS covariance models used in

geostatistics are non-differentiable (e.g., the exponential, spherical, and logistic models). This effect is

due to the change in the slope of the covariance at zero lag, and it is milder than that induced by noise.

Selection of a non-differentiable model as optimal is based on parametric fits with the experimental

structure function and does not actually imply that the SRF from which the data are sampled is inherently

non-differentiable. Non-differentiability due to model selection is practically not a problem, since to date

flexible differentiable models (as mentioned above) are available.(c) Due to non-stationarity:Non-

stationary SRF’s with WSS increments, such as the fractional Brownian motion (fBm), have non-

differentiable covariance functions. In this case, one can apply the CHI to the SRF increments in

orthogonal directions, which are differentiable2.

III. T HE COVARIANCE HESSIAN IDENTITY

A. Background

The method that we propose is based on theCovariance Hessian Identityintroduced by Swerling [33].

The CHI links the second order derivatives of the covariance function (in directionsi and j), evaluated

at zero distance, to the mean value of the product of the first order field derivatives (in the respective

directions). We show that the covariance derivatives are explicitly expressed in terms of the correlation

lengths along the principal axes and the orientation angles. On the other hand, the mean value of the field

first order derivative products can be estimated by means of suitable sample averages assuming ergodic

conditions. In this manner, the anisotropy parameters are expressed in terms of equations that involve

sample averages. We solve the nonlinear equations explicitly in 2D, obtaining closed-form solutions

for the anisotropy aspect ratio and the orientation angle. Unless otherwise noted we use the Einstein

convention, which implies a summation over repeated indices on the same side of an equation.

2The CHI method focuses on short-range anisotropic correlations, while for fBm long-range properties are often the focus.
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If the covariance of the SRFX(s) is differentiable, theCovariance Hessian MatrixH (CHM) is

defined as follows

Hij(r) = −∂2cx(r)
∂ri ∂rj

, i, j = 1, . . . , d. (5)

For normal, stationary SRFs the existence and finiteness of the second order derivatives of the covari-

ance function at zero lag ensures the existence of the first order field derivatives [34]. We define the

tensor that represents theGradient Kronecker Product(GKP),X, with elementsXij , as follows,

Xij
.= ∇X(s)⊗∇XT (s) = ∂iX(s) ∂jX(s). (6)

We also define the expectation,Q, of the GKP,X, as

Qij
.= 〈Xij〉 =

〈
∂iX(s) ∂jX(s)

〉
. (7)

Swerling has proved in [33] the following equation, which we call theCovariance Hessian Identity(CHI):

Q = H(r)|r=0 . (8)

B. CHI Equations

Let us assume that the covariance function is anisotropic. In the following, we derive a relation between

the CHM in the original coordinate system, and the second-order derivative of the covariance function

expressed in an isotropic system of dimensionless coordinates.

Theorem 1: Let us assume thatX(s) is a differentiable, statistically homogeneous SRF with a

correlation function that exhibits geometric (elliptic) anisotropy. The CHMH∗
ij(0) in the principal

system is a diagonal tensor given by

H∗
ij(h)

∣∣
h=0

= − δij

d ξiξj
4 c̃x(0), (9)

where4 c̃x(0) =
∑d

i=1 ∂2c̃x(0)
/
∂r2

i is the Laplacian of the reduced isotropic covariance functionc̃x(h)

evaluated at zero lag. The functionc̃x(h) is obtained by rotation and rescaling of the axes. The vector

h is the lag in the rotated and rescaled system. Theξi, ξj (i, j = 1, . . . , d) are the correlation lengths

in the respective principal directions andδij is the Kronecker delta, defined byδij = 1, if i = j and

δij = 0 for i 6= j.

Proof: It is assumed that the covariance function in the initial coordinate system iscx(r), wherer is

the lag vector in the initial system. Let the lag vector ber′ in the principal system, which is obtained from
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the initial by a rotation; in this system the covariance function becomesc′x(r′), so thatc′x(r′) = cx(r).

The rotation matrix isU(θ), whereθ is the vector of the rotation angles ind dimensions. The elements

of the rotation matrix areUij = ∂r′i/∂rj . Using the chain rule of differentiation oncx(r) we find

∂cx(r)
∂ri

=
∂c′x(r′)

∂r′k

∂r′k
∂ri

=
∂c′x(r′)

∂r′k
Uki. (10)

An additional differentiation leads to

∂2cx(r)
∂ri ∂rj

=
∂2c′x(r′)
∂r′k ∂r′l

∂r′l
∂rj

Uki =
∂2c′x(r′)
∂r′k ∂r′l

Uki Ulj . (11)

We define the reduced isotropic covariancec̃x(h) = c′x(r′), whereh is the dimensionless lag vector in

the rescaled coordinate system defined byh = (r′1/ξ1, . . . , r
′
d/ξd). The functionc̃x(h) is isotropic with

respect toh. In the principal coordinate system, the CHM is given by

∂2c′x(r′)
∂r′l ∂r′m

=
∂

∂r′m

[
∂c̃x(h)

∂hl

∂hl

∂r′l

]
=

∂hm

∂r′m

∂

∂hm

[
∂c̃x(h)

∂hl

1
ξl

]
=

1
ξmξl

∂2c̃x(h)
∂hl∂hm

. (12)

In order to evaluate the CHM at zero lag in the rescaled isotropic system, i.e.,

H̃ij(h) .=
∂2c̃x(h)
∂hi∂hj

(13)

one can use the spectral representation of the covariance. A more intuitive approach, which is valid in

any d, is as follows: due to the isotropy of̃cx(h), H̃ij(0) is a diagonal matrix with equal elements in all

directions. Hence, it follows that̃Hij(0) = δij Tr(H̃)
/
d, whereTr denotes the trace of a matrix. Based

on (13), it follows thatTr(H̃) =
∑d

i=1 H̃ij(0) ≡ 4 c̃x(0). Thus, the CHM in the principal system is

indeed given by (9).

Equation (9) provides a closed-form expression for the CHM in the principal system, which can be

used to recast the CHI equations in a form that is explicit in the anisotropy parameters. Assuming that

the correlation lengths are non-zero in all directions, it follows from (9) that

ξi

ξj
=

√
H∗

jj(0)
H∗

ii(0)
i, j = 1, . . . , d. (14)

Thus, one can defined− 1 aspect ratios for the correlation lengths as follows

Ri(1)
.=

ξ1

ξi
=

√
H∗

ii(0)
H∗

11(0)
i = 1, ..., d. (15)

The vector of correlation aspect ratios, anchored to the first principal direction,R1 = (1, R2(1), . . . , Rd(1))

hasd − 1 independent components. Anchoring the aspect ratios on the lengthξ1 is arbitrary. Based on
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(9) and (11), the CHM in the original system is given by

Hij(0) = Uli(θ) Ulj(θ)H∗
ll(0) = −Uli(θ)Ulj(θ)

R2
l(1)

d ξ2
1

4 c̃x(0). (16)

Finally, in light of equation (8), the system of CHI equations is expressed as follows

Qij = −
R2

l(1)

ξ2
1d

4 c̃x(0) Uli(θ) Ulj(θ) i, j = 1, . . . , d. (17)

The expressions (17) form a system of nonlinear equations that involve the components of the rotation

matrixU and the aspect ratio vectorR1 as unknown variables, which should be determined from theQij .

Taking into account the symmetry of the matrixQij , the number of independent equations isd(d + 1)/2.

The correlation lengthξ1 and the Laplacian of the covariance4 c̃x(0) are also unknown at this stage.

However, as shown below, they are not required for determining the anisotropy parameters. Instead, they

can be estimated at a later stage following the isotropic transformation.

C. Variance of the GKP Tensor

Let us define the shorthand notation for the partial field derivatives∂iX(s) = ∂X(s)/∂si, and for the

GKP Xij = ∂iX(s) ∂jX(s). The CHI gives the mean value of the GKP, according to (8). The width of

the GKP distribution is measured by the square root of Var(Xij). The latter can be evaluated explicitly

if X(s) is a Gaussian SRF.

Theorem 2 For a Gaussian, statistically homogeneous SRFX(s), the variance of the GKP tensor is

given by the following expression3:

Var(Xij) = Hii(0)Hjj(0) + H2
ij(0), i, j = 1, . . . , d. (18)

Proof: By definition

Var(Xij) =
〈
X2

ij

〉− 〈
Xij

〉2 =
〈
[∂iX(s)]2[∂jX(s)]2

〉− 〈
∂iX(s) ∂jX(s)

〉2
(19)

Note that〈∂iX(s) ∂jX(s)〉 = Hij(0). Since∂iX(s), i = 1, . . . , d are zero-mean, normally distributed

SRFs, we can apply the product-of-pairs decomposition property of central Gaussian moments to expand

the term
〈
[∂iX(s)]2 [∂j X(s)]2

〉
as follows:

〈
[∂iX(s)]2 [∂jX(s)]2

〉
= 2

〈
∂iX(s) ∂jX(s)

〉2 +
〈
[∂iX(s)]2

〉 〈
[∂jX(s)]2

〉
(20)

3Summation is not implied over the indicesi and j here.
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The first term on the right hand side is equal to2H2
ij(0), and cancels〈Xij〉2 thus completing the proof.

For normal, stationary SRF’s, the GKP is a tensorial SRF, and the normalized diagonal elements

Xii/
√

2Hii(0) follow the χ2 distribution with one degree of freedom. Based on the above, the coefficient

of variation (COV) for the non-zero GKP elements becomes

COV(Xij) =

√
Hii(0)Hjj(0)

H2
ij(0)

+ 1. (21)

The COV(Xij) is always greater than unity, indicating high variability of the GKP.

D. Anisotropy of Lognormal SRF

Let us consider a jointly lognormal WSS SRFX(s). 4 Then, the SRFY (s) = log X(s) follows the

joint normal (multinormal) distribution. The mean and the covariance functions of the primary and the

logarithmic SRF are related by means of the equations:

mx = emy+cy(0)/2, (22)

cx(r) = m2
x

[
ecy(r) − 1

]
(23)

where

my = 〈Y (s)〉, mx = 〈X(s)〉 = 〈eY (s)〉. (24)

Equations (22) and (23) follow both from thecumulant expansion[35], [36]: Any random functionZ(s)

can be expressed as follows:

〈eZ(s)〉 = exp
[∑∞

m=1
Cm[Z(s)]

/
m!

]
, (25)

whereCm[Z(s)] is the cumulant of orderm of the SRFZ(s). If Z(s) is a Gaussian SRF, only the first

two cumulants are non-zero, i.e.C1[Z(s)] = 〈Z(s)〉, C2[Z(s)] = 〈Z2(s)〉 − 〈Z(s)〉2. More specifically,

for mx it holds thatZ(s) = Y (s), and thusC1[Y (s)] = my, C2[Y (s)] = cy(0), which in view of (25)

leads to (22). The definition of the covariance function iscx(r) = 〈X(s) X(s+r)〉−m2
x, or equivalently

cx(r) = 〈eY (s)+Y (s+r)〉 −m2
x. In this caseZ(s) = Y (s) + Y (s + r) and the respective cumulants are

C1[Z(s)] = 2my, andC2[Z(s)] = 2cy(0) + 2cy(r), thus leading to (23).

4In this section, we consider thatmx 6= 0, since the skewness of the lognormal distribution does not confer any advantages

on centered fluctuations.
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Theorem 3: Let Y (s) be a lognormal, WSS and differentiable SRF, andX(s) = exp[Y (s)] denote

its lognormal counterpart. The CHMs of the two fields are related by means of the equationHx(0) =

ρHy(0), whereρ ∈ R+.

Proof: For a WSS, lognormal SRF,mx ∈ R+ is constant. Hence, if the covariance functioncy(r) is

differentiable, so is the covariancecx(r). It follows from (23) that

∂2cx(r)
∂ri∂rj

= m2
x

∂

∂ri

[
ecy(r) ∂cy(r)

∂rj

]
= m2

x ecy(r)

[
∂cy(r)

∂ri

∂cy(r)
∂rj

+
∂2cy(r)
∂ri∂rj

]

(26)

Since cy(r) is differentiable, its first derivative vanishes at zero lag, where the maximum is attained

∂cy(r)/∂rj |r=0 = 0. Hence, from (26) one obtains the equation

Hx(0) = m2
x ecy(0) Hy(0). (27)

Equation (27) proves the theorem usingρ = m2
x exp(σ2

y), whereσ2
y = cy(0).

Theorem 4: The aspect ratio vectorRx(1) is identical with the vectorRy(1).

Proof: The theorem follows directly from (15) and (27).

Theorems 3 and 4 ensure that the anisotropy parameters of the SRFX(s) are identical to those of the

SRF Y (s). This implies that if the initial SRFX(s) follows the lognormal distribution, its anisotropy

parameters can be determined from those of the normal SRFY (s).

IV. ESTIMATION OF ANISOTROPYPARAMETERS

First we consider the estimation of the anisotropy parameters in any dimensiond ≥ 2. This requires

solving the nonlinear equations (17), which is hindered by two factors: First, the right hand side of (17)

involves the parametersξ1 and4 c̃x(0), which are not known in advance. Secondly, the expected GKP

Q is estimated from the sample by means ofQ̂, which is most likely contaminated by noise and other

estimation errors (e.g., discretization effects).

A. Estimation of Anisotropy Parameters in Any Dimension

We assume without loss of generality thatQ̂11 is the GKP element with the maximum value. Then,

we cast the system of equations in terms of ratios of the CHM elements,Hij(0)/H11(0) – in which the

dependence onξ1 and4 c̃x(0) is eliminated – and the respective sample slope tensor ratiosQ̂ij/Q̂11.
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To account for possible sampling or modeling errors, we allow for the possibility of an imperfect match

between the CHM ratios and the respective sample slope tensor ratios by introducing the residual

Q̂ij/Q̂11 −Hij(0)/H11(0) = εij(θ;R1). (28)

The anisotropy parameters can then be determined by minimizing numerically the following nonlinear

functionalΛ(θ;R1) =
∑d

i=2

∑d
j≤i ε

2
ij(θ;R1), i.e.,

{θ̂; R̂1} = arg min
θ;R1

Λ(θ;R1) (29)

The Λ(θ;R1) is non-negative, and its global minimum (zero), is obtained when the residuals vanish.

This numerical approach is general and can be useful if an explicit solution for the anisotropy parameters

is not available (e.g., ford > 2.)

An alternative numerical approach is based on the diagonalization of the CHM, where the latter is

estimated from the sample by means ofQ̂. Then, thed − 1 square roots of the eigenvalue ratios (e.g.,

with respect to the first eigenvalue) correspond the anisotropic ratios, while the orientation angles can be

obtained from the elements of the diagonalizing transformation matrix.

B. Estimation of Anisotropy Parameters in Two Dimensions

Based on (17), we derive expressions for the CHI equations that are valid in two dimensions. We then

solve the equations explicitly to obtain estimates of the anisotropy parameters. The rotation matrixU is

given byU11 = U22 = cos θ andU12 = −U21 = sin θ. The anisotropy ratio vector isR1 = (1, R2(1)).

The equations (17) are then expressed as follows

Q11 =
σ2

x ζ2

ξ2
1

(
cos2 θ + R2

2(1) sin2 θ
)

(30)

Q22 =
σ2

x ζ2

ξ2
1

(
R2

2(1) cos2 θ + sin2 θ
)

(31)

Q12 = Q21 =
σ2

x ζ2

ξ2
1

[
sin θ cos θ(1−R2

2(1))
]

(32)

whereζ = 1
2 4 c̃x(0) is an unknown parameter. The orientation of the principal axes is determined by

θ and the aspect ratioR2(1). By dividing both sides of (31)-(32) by the terms on the respective sides of

(30) we obtain the following set of equations

qdiag
.=

Q22

Q11
=

R2
2(1) + tan2 θ

1 + R2
2(1) tan2 θ

, (33)
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Fig. 2. Dependence of the ratioqdiag on R2(1) andθ. The color scale corresponds tolog(qdiag) for enhanced level resolution.

qoff
.=

Q12

Q11
=

tan θ(1− R2
2(1))

1 + R2
2(1) tan2 θ

, (34)

whereθ ∈ [−π/2, π/2] andR2(1) ∈ [0,∞).

It is straightforward to show that (33) and (34) are invariant under the transformationtan θ → −1/ tan θ

andR2(1) → 1/R2(1). Equivalently, this means thatqdiag andqoff are invariant under the transformations

θ → θ ± π/2 and R2(1) → 1/R2(1). Hence, the non-degenerate parameter space is defined byθ ∈
[−π/2, π/2) andR2(1) ∈ [1,∞). The degeneracy reflects the fact that an elliptical curve (i.e., an isolevel

covariance contour) is equivalent to an ellipse rotated by90o, with the orientation of the minor and major

axes interchanged. The dependence ofqdiag and qoff on the anisotropy parameters is shown in Figs. 2

and 3. Note thatqdiag is symmetrical, whileqoff is antisymmetrical aroundθ = 0.

The anisotropy parameters are the roots of the nonlinear system of equations (33) and (34), and they

can be expressed explicitly as follows

θ =
1
2

tan−1

(
2qoff

1− qdiag

)
, (35)

R2(1) =

√
1 +

1− qdiag

qdiag − (1 + qdiag) cos2 θ
. (36)

The solution forR2(1) is valid for all qdiag and qoff . The solution forθ is well defined provided that

qdiag 6= 1 and qoff 6= 0. For qdiag = 1 and qoff = 0 one obtainsR2(1) = 1 but θ is indeterminate. This

result is meaningful since the caseqdiag = 1, qoff = 0 corresponds to isotropic dependence, and thus no

preferred angle. This is obvious from equations (33) and (34), which are satisfied by anyθ if R2(1) = 1.
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Fig. 3. Dependence of the ratioqoff on R2(1) andθ.

V. NUMERICAL RESULTS ONREGULAR SUPPORTS

Below we focus on the estimation of the anisotropy parameters from data distributed on rectangular

grids with dimensions (number of nodes per side)N = L1 × L2. In practice, the true (unknown) values

of qdiag andqoff are approximated by the sample estimatesq̂diag andq̂off . In view of (6) and (7), the latter

require estimates of the GKP̂X, which involves the calculation of numerical derivatives. The estimates

θ̂ and R̂2(1) for the anisotropy parameters are then obtained from (35) and (36) by replacingqdiag and

qoff with their sample estimates. Using either centered differences or Savitzky Golay (SG) differentiation

filters [37], [38] to estimate the partial derivatives, the algorithmic complexity of the method isO(N).

We use the discrete spectral method (Fourier filtering method) [39], [40] to generate anisotropic

random fields with Gaussian, and Matérn (ν = 2, 3, 5) covariance models. On regular grids this method

takes advantage of the computational efficiency of the Fast Fourier Transform (FFT). Fig. 4 shows

realizations of these fields with anisotropic ratioR2(1) = 2 and rotation angleθ = 20o on a regular

square lattice withL = 512 nodes per side and the smallest correlation length,ξmin = min(ξ1, ξ2), given

by ξmin = {4, 2, 1.5, 1} respectively. The derivations of the anisotropic power spectral density for SRFs

with Gaussian and Matérn correlations are given in the Appendix. Unless otherwise noted, in this section

we use square grids withL = 512 sites per side and the covariance models with the correlation lengths

specified above. In addition, the mean estimates and the errors presented are based on an ensemble of

100 independent realizations from a multivariate normal distribution with the specified covariance model.
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Gaussian Mat́ern, ν = 2

Matérn, ν = 3 Matérn, ν = 5

Fig. 4. Realizations of SRF with correlations lengthsξmin = {4, 2, 1.5, 1} for respectively the Gaussian, Matérnν = 2, Matérn

ν = 3, and Mat́ern ν = 5 covariance models and anisotropy parametersR2(1) = 2 andθ = 20o.

We estimate the anisotropy parameters for SRF realizations that correspond to the following cases:

R2(1) = {0.3, 0.5, 0.7, 1, 1.5, 2, 3, 5}, θ = 20o andR2(1) = 2, θ = {−45,−30,−15, 0.1, 15, 30, 45}o. The

mean values of the estimates are presented in Tables I and II forR̂2(1) and θ̂ respectively. First, the

angle θ̂ is estimated from (35) using the sample based estimatesq̂diag, q̂off ; the angleθ̂ is used in (36)

to estimate the anisotropic ratio. In both cases, the errors are reduced as the degree of differentiability
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TABLE I

TRUE (FIRST COLUMN) AND ESTIMATED VALUES OF R2(1) FOR VARIOUS COVARIANCE MODELS

R2(1) Gaussian Mat́ern ν = 2 Matérn ν = 3 Matérn ν = 5

0.3 0.3104 0.3259 0.3161 0.3136

0.5 0.5135 0.5290 0.5195 0.5172

0.7 0.7125 0.7242 0.7172 0.7156

1 0.9994 0.9991 0.9991 0.9993

1.5 1.4693 1.4416 1.4576 1.4618

2 1.9434 1.8851 1.9195 1.9289

3 2.8920 2.7612 2.8394 2.8625

5 4.7624 4.4200 4.6220 4.6916
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Fig. 5. Relative mean absolute error ofR̂2(1) versus the trueR2(1) for SRFs with Gaussian and Matérn (ν = 2, 3, 5) correlations

(θ = 20o, ξmin = 4, 2, 1.5, 1 respectively) on a square512× 512 grid.

increases. In Figs. 5 and 6 we illustrate the relative Mean Absolute (RMA) error forR̂2(1) and the MA

error for θ̂. Smoother covariances lead to smaller errors. The RMA in all the cases studied is less than

10% for R2(1) ∈ [0.3, 3]. The MA error of θ̂ is low (less than2o for all cases studied); it appears to be

almost symmetrical aroundθ = 0o, where, as well as atθ = ±45o, it reaches a minimum. In the case of

Gaussian correlation, the MA error is lower than1o.

The curves in Fig. 5 are asymmetric aroundR2(1) = 1, due to θ 6= 45o. Note thatR2(1) is un-
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TABLE II

TRUE (FIRST COLUMN) AND ESTIMATED VALUES OF θ FOR VARIOUS COVARIANCE MODELS

θ in o Gaussian Mat́ern ν = 2 Matérn ν = 3 Matérn ν = 5

−45 −45.0002 −44.9999 −45.0001 −44.9999

−30 −30.9210 −31.6937 −31.2442 −31.1469

−15 −15.9282 −16.7110 −16.2460 −16.1569

0.1 0.1576 0.1911 0.1837 0.1693

10 10.7704 11.3942 11.0419 10.9560

20 21.1279 22.0469 21.5233 21.4004

30 30.9658 31.7536 31.3953 31.1985

45 45.0000 45.0001 45.0000 44.9996
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Fig. 6. Mean absolute error of̂θ versus the trueθ for SRFs with Gaussian and Matérn (ν = 2, 3, 5) correlations (R2(1) = 2,

ξmin = 4, 2, 1.5, 1 respectively) on a square512× 512 grid.

derestimated (overestimated) as its true value increases above (drops below) unity (cf. Table I). This

“compression” of the estimatedR2(1) is due to the limited grid resolution and sample size. This effect

highlights the contradicting requirements for keeping the grid size large as compared to the correlation

lengths in order to ensure ergodicity [23], while keeping all correlation lengths larger than the grid

step in order to resolve the correlation. These two requirements can be summarized asmin(ξi,ξj)
max(ai,aj)

À 1
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Fig. 7. Relative mean absolute error ofR̂2(1) versus the trueR2(1) on a512 × 512 square grid. SG filtering (p=5, W=7) is

used.

and min(Li,Lj)
max(ξi,ξj)

À 1. When R2(1) À 1 or R2(1) ¿ 1, it is not possible to simultaneously satisfy both

requirements, unless the sample size is substantially increased.

The estimateŝR2(1) andθ̂ are quite accurate on the grid. It is also observed that the accuracy increases

for smoother fields that admit higher order derivatives. If SG filtering (with polynomial orderp = 5 and

window size2W + 1, W = 7) is employed the error is considerably reduced as shown in Fig. 7. The

above numerical results demonstrate the efficiency of the proposed method for anisotropy parameters

identification in the case of differentiable normal fields on a regular grid. The average CPU time for the

estimation of the anisotropic parameters on512 × 512 square grids istCPU ≈ 0.06 sec using centered

differences andtCPU ≈ 2.7 sec using SG differentiation.5

In Fig. 8 we investigate the impact of the grid size onR̂2(1). We use Gaussian, and Matérn(ν = 2, 3, 5)

anisotropic covariance models withR2(1) = 2 on square grids of lengthL = 2p, p = 6, . . . , 11 per side.

The RMA of R̂2(1) declines asymptotically asL increases and the ergodic condition tends to be satisfied.

Finally, we investigate the effect of zero-mean AWGN on an SRF field. We characterize the intensity

of the noise by the signal to noise ratio (SNR), i.e., the ratio of the SRF variance to the noise variance.

We generate SRF realizations withξmin = 4, to which we add zero-mean AWGN so thatSNR =

5The CPU times reported are averages over 100 realizations. They were obtained on a desktop with an Intel 67002.66 GHz

processor, running Matlabr7.3 under the Windows XP OS (service pack 2). The simulations use less than 600 MB from the

3.24 GB RAM.
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Fig. 8. Relative mean absolute error ofR̂2(1) versus the grid length per sideL for SRFs with Gaussian and Matérn (ν = 2, 3, 5)

correlations (θ = 20o, ξmin = 4, 2, 1.5, 1 respectively). The scale of the horizontal axis is logarithmic.
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Fig. 9. Relative mean absolute error ofR̂2(1) versus the trueR2(1) for different levels of zero-mean AWGN added to an SRF

with Gaussian correlations (ξmin = 10, θ = 20o) on a512× 512 square grid. The SG differentiator (p=5, W=11) is used. The

scale of the vertical axis is logarithmic.

{inf, 30, 20, 10} dB. We use SG filtering (with polynomial orderp = 5 and window size2W+1, W = 11)

to reduce the impact of noise on the derivatives estimation. The results are presented in Fig. 9. For

SNR > 30 dB, the anisotropy parameters are accurately estimated (RMA less than10%) in the entire

range ofR̂2(1) considered, while for30 > SNR > 20 dB the RMA of the extreme anisotropic ratios

does not exceed20%. For lower SNR values the range of accurately estimated anisotropic ratios is

progressively reduced.
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VI. N UMERICAL RESULTS ONIRREGULAR SUPPORTS

In a number of applications, particularly in the field of geostatistics, the SRF is sampled on an irregular

grid. As a result, the evaluation of the field’s partial derivatives is not straightforward. In such cases, the

results presented in this section indicate that it is preferable to interpolate the data on a regular lattice

before estimating the anisotropy parameters. The choice of the above interpolator relies on the following

desirable characteristics: (i) the interpolator should be kept simple in the framework of a pre-processing

stage and (ii) the induced inaccuracies in estimating field partial derivatives should not introduce “too

large” deviations in anisotropy parameters estimation. Another option that we investigate is the direct

application (i.e., omitting grid interpolation) of SG filters on scattered data (henceforth, scattered SG).

In the following, we compare the performance of simple interpolators, namely linear, cubic spline,

nearest neighbors and the biharmonic spline interpolator [41] followed by a differentiator (either em-

ploying centered differences or an SG filter) to the evaluation of the partial derivatives using scattered

SG filters. The biharmonic spline interpolator relies on the minimum curvature principle, while the

interpolated field is a linear combination of Green’s functions centered on each data point. The weights

of the relevant Green’s functions are obtained by solving a linear system of equations,O(N). The

algorithm is unstable in the case of very proximate sampling points. This problem can be overcome by

introducing a critical distance (typically a percentile of the point-to-point distance distribution), below

which sampling points are considered identical and the respective field values are averaged. The numerical

complexity increases toO(N log2 N), while the use of scattered SG filters requiresO(N2) operations.

If the numerical complexity is not an issue, more elaborate interpolators based on kriging or Wiener

filtering [27] could be employed.

We use the Fourier filtering method to generate SRFs with Gaussian correlations for the following

combinations of anisotropy parameters: (i)R2(1) = {0.3, 0.5, 0.7, 1, 1.5, 2, 3} and θ = 20o and (ii)

R2(1) = 2 and θ = {−45,−30,−15, 0.1, 15, 30, 45}o on square lattices of sizeL × L, whereL = 256.

These fields are then randomly sampled atNs = 4096 points and interpolated over a regular lattice of size

Lr×Lr, whereLr = 64 using linear, cubic spline, nearest neighbor and biharmonic spline interpolation.

The relative RMA error in estimatingR2(1) and the MA error in estimatingθ using a centered differences

differentiator are presented in Figs. 10 and 11 respectively. The plots confirm that the biharmonic spline

interpolator outperforms the other three interpolators. The RMA error ofR̂2(1) is higher than the respective
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Fig. 10. Relative mean absolute error ofR̂2(1) versus the trueR2(1) using four different interpolation algorithms (linear, cubic,

nearest neighbor and biharmonic spline). The samples contain4096 values of an SRF with Gaussian correlations (ξmin = 8,

θ = 20o), randomly selected from a256× 256 grid.
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Fig. 11. Mean absolute error of̂θ (in degrees) versus the trueθ using four different interpolation algorithms (linear, cubic,

nearest neighbor and biharmonic spline). The samples contain4096 values of an SRF with Gaussian correlations (ξmin = 8,

R2(1) = 2), randomly selected from a256× 256 grid.

values on the grid (cf. Fig. 5). This loss in accuracy is inevitable due to the irregular sampling point

distribution and, most significantly, the considerable loss of information due to sampling only≈ 6% of

the field values. The estimation of the rotation angle remains quite satisfactory. We also compare the

R̂2(1) estimates for Gaussian and Matérn SRFs using the biharmonic spline interpolator. The RMA error

of R̂2(1) is shown in Fig. 12. In agreement with the regular grid case, the estimates are more accurate

for SRFs that admit higher order derivatives.
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Fig. 12. Relative mean absolute error ofR̂2(1) versus the trueR2(1) for SRFs with Gaussian and Matérn (ν = 2, 3, 5)

correlations (θ = 20o, ξmin = 8, 4, 3, 2 respectively). The samples contain4096 values randomly selected from a256 × 256

grid and interpolated on a64× 64 grid using the biharmonic spline.

Next, to improve the estimates we use SG smoothing in two ways: First, the scattered data are

interpolated on the grid (as described above) and then SG filters(p = 5, W = 7) are used to estimate

the derivatives. The algorithmic complexity of this method is alsoO(N log2 N). Secondly, the filter is

imposed directly on the scattered data (without interpolation). In this case, a 2D window that depends

on the sampling point distribution is specified. We consider a third degree polynomial (p = 3), and

around each point, a neighborhood that includes the nearest48 neighbors. This increases the algorithmic

complexity toO(N2). The results obtained are compared in Figs. 13-14. The computational cost of

the operations required to estimate the anisotropic parameters plotted above is relatively small. The CPU

time tCPU required for the estimation of the anisotropy parameters per sample is: (i)tCPU ≈ 0.15 sec for

interpolation (linear, cubic, and nearest neighbor methods) followed by SG differentiation; (ii)tCPU ≈ 14

sec if the biharmonic spline interpolator is used; (iii)tCPU ≈ 23 sec for direct application of the SG to

the scattered data.

VII. C ONCLUSIONS

In this paper we present a non-parametric, systematic approach for the identification of elliptic anisotropy

parameters of statistically homogeneous, differentiable, jointly normal or lognormal SRFs, focusing in

the 2D case. The method is based on the Covariance Hessian Identity (CHI). It involves the evaluation

of field partial derivatives in orthogonal directions, and their relation through closed form expressions, to
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Fig. 13. Relative MA error ofR̂2(1) for irregularly sampled SRFs with Gaussian correlations using SG differentiation for SRFs

with Gaussian correlations (θ = 20o, ξmin = 4). The samples contain4096 values randomly selected from a256 × 256 grid.

For four of the plots the samples are first interpolated on a64× 64 grid using different interpolators (nearest neighbor, linear,

cubic, biharmonic spline) and the sample derivatives are based on SG filtering. For the fifth plot (o) the scattered SG method

is used without interpolation.
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Fig. 14. Relative MA error ofR̂2(1) for irregularly sampled SRFs with Gaussian and Matérn (ν = 2, 3, 5) correlations. The

samples contain4096 values randomly selected from a256 × 256 grid. The samples are first interpolated on a64 × 64 grid

using the biharmonic spline interpolator and the sample derivatives are estimated based on SG filtering (p=5, W=7).

the anisotropy ratio and the rotation angle. For anisotropic ratios in the range[1/3, 3], it is the only robust

and computationally efficient non-parametric method available for anisotropy identification in spatial data.

On regular grids, the method’s algorithmic complexity is linear to the sample size,O(N). The accuracy

of the method is very good provided that ergodic conditions are respected. The accuracy can be further
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improved using Savitzky Golay differentiation, at a small computational cost.

The CHI approach is tested on simulated data on regular grids. In general, the accuracy of the anisotropy

estimates increases with the smoothness of the SRF realizations. For SRFs with Gaussian correlations, the

RMA error in the anisotropy ratio estimation can be lower than10% for moderate grid sizes (i.e.128×128)

even forR2(1) significantly different from unity. Use of the centered differences approximation for the

derivatives allows very fast estimates of the anisotropy. If the data are contaminated by uncorrelated noise,

or if higher accuracy is in general desired, Savitzky Golay differentiators can improve the estimation of the

anisotropy parameters. The impact of zero-mean AWGN components is found negligible forSNR > 20,

dB but it becomes significant for lower SNRs.

The method is extended for application on scattered data. Two approaches are investigated. In the

first approach, a simple interpolator is used to obtain field estimates on a regular grid. The derivatives

of the interpolated field are then evaluated by means of either centered differences or SG filters. The

best accuracy in theR2(1) estimates is obtained with the biharmonic spline interpolator. However, the

numerical complexity increases toO(N log2 N). Other interpolators (linear, cubic, nearest neighbor) are

significantly faster but they give reduced accuracy. In the second approach, the SG filter is directly applied

to the scattered data. This approach is considerably slower, but the obtained MA errors inθ̂ are more

uniform and their maximum is reduced. Overall, the estimation accuracy depends on the sampling density

and configuration. The accuracy reduction is due to the information loss resulting from the disorder and

the rarefication of the sampled pattern. In all cases, the method’s accuracy improves as the ratios of

the domain to the correlation length, and of the correlation length over the lattice step (or the average

minimum distance between sampling points) increase.

Future research should address the application of more elaborate denoising techniques to lattice data.

Finally, in the case of non-differentiable SRFs it would be worth investigating the development of a

differentiability test, and the application of a smoothing kernel to restore differentiability with minimal

impact on the anisotropic structure of the correlations at larger scale.
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APPENDIX

To use the spectral method for anisotropic SRF simulation, closed form expressions for the power

spectral densities are needed. The dimensionless lagsh1 andh2 in the transformed isotropic coordinate

system can be expressed in relation to the sampling axes systemr1, r2 as follows:

h1 =
cos θ

ξ1
r1 +

sin θ

ξ1
r2, (37)

h2 = −sin θ

ξ2
r1 +

cos θ

ξ2
r2. (38)

The Euclidean distance||h|| is thus expressed in terms of the original distancer = (r1, r2) as follows:

||h||2 = Ar2
1 + A2r

2
2 + A12r1r2 (39)

where, (40)

A1 = ξ−2
1 (cos2 θ + R−2 sin2 θ) (41)

A2 = ξ−2
1 (sin2 θ + R−2 cos2 θ) (42)

A12 = −2ξ−2
1 sin θ cos θ(R−2 − 1). (43)

The Gaussian,cG(r1, r2) and the Mat́ern, cM (r1, r2) correlation functions are expressed as follows:

cG(r1, r2) = exp(−||h||2) = exp
[−(A1r

2
1 + A2r

2
2 + A12r1r2)

]
, (44)

cM (r1, r2) = c0 21−ν Γ−1(ν) ||h||ν Kν(||h||) = c021−ν Γ−1(ν)

×
√(

A1 r2
1 + A2 r2

2 + A12 r1 r2

)ν
Kν

(√
A1r2

1 + A2r2
2 + A12r1r2

)
, (45)

whereKν(·) is the modified Bessel function of the second kind and orderν and Γ(·) is the Gamma

function.

The respective power spectral densitiesC(k1, k2) can be evaluated from the Fourier transform of the

correlation functionc(r1, r2) expressed as in (44) or (45) according to the correlation type:

C(k1, k2) =
∫ ∞

−∞

∫ ∞

−∞
c(r1, r2)e−jk1r1e−jk2r2dr1dr2. (46)

For the evaluation of (46), we use the inverse of the transformations (37) and (38):

r1 = h1ξ1 cos θ − h2ξ2 sin θ = ξ1(h1 cos θ − h2R sin θ) (47)

r2 = h1ξ1 sin θ + h2ξ2 cos θ = ξ1(h1 sin θ + h2R cos θ). (48)
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The Jacobian of this transformation is

|J1| =
∣∣∣∣∣
∂(r1, r2)
∂(h1, h2)

∣∣∣∣∣ = Rξ2
1 . (49)

In light of the above, the spectrum is expressed in terms of the correlation functionc̃(h1, h2) in the

isotropic system as follows:

C(k1, k2)= |J1|
∫ ∞

−∞

∫ ∞

−∞
c̃(h1, h2) e−(jh1k̃1+jh2k̃2)dh1dh2 (50)

wherek̃ = (k̃1, k̃2) is the wave-vector in the isotropic system, and

k̃1 = ξ1(k1 cos θ + k2 sin θ), (51)

k̃2 = ξ1R(−k1 sin θ + k2 cos θ). (52)

A. Gaussian Correlation

In the case of a Gaussian correlation function, equation (50) becomes:

C(k1, k2) = |J1|
∫ ∞

−∞

∫ ∞

−∞
e−(h2

1+h2
2+jh1k̃1+jh2k̃2)dh1dh2 = πξ2

1Re−0.25(k̃2
1+k̃2

2) ⇒ (53)

C(k1, k2) = πξ2
1Re−0.25(G1k2

1+G2k2
2+G12k1k2), (54)

where

G1 = ξ2
1(cos2 θ + R2 sin2 θ) (55)

G2 = ξ2
1(sin

2 θ + R2 cos2 θ) (56)

G12 = 2ξ2
1 sin θ cos θ(1−R2) (57)

B. Mat́ern Correlation

In the case of the Matérn correlation, equation (50) becomes:

C(k1, k2) = c′0 |J1|
∫ ∞

−∞

∫ ∞

−∞
||h||ν Kν(||h||) exp(−jh1k̃1 − jh2k̃2) dh1dh2, (58)

where c′0 = c021−ν Γ−1(ν) and J1 is given by (49). Changing to polar coordinatesh = (h, φ) where

h = ||h||, the h1 andh2 are expressed ash1 = h cosφ andh2 = h sinφ. Finally, using the Jacobian of

the transformation|J2| = h, it follows that

C(k1, k2) = c′0 |J1|
∫ ∞

0

∫ 2π

0
hν+1 Kν(h) e−jh(cos φk̃1+sin φk̃2) dφdh. (59)
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The angle integral leads to
∫ 2π
0 dφ e−jh(cos φk̃1+sin φk̃2) = 2π J0

(
h
√

k̃2
1 + k̃2

2

)
, where J0 is the Bessel

function of the first kind and order zero. Hence, theC(k1, k2) is given by the followingHankel transform

C(k1, k2) = 2π c′0 |J1|
∫ ∞

0
hν+1 Kν(h) J0

(
h

√
k̃2

1 + k̃2
2

)
dh. (60)

This Hankel transform is evaluated explicitly using [42]

2π
∫∞
0 hν+1 Kν(h)J0(hβ) Γ(ν + 1) 2ν+2 1

π (1+β2)ν+1 . (61)

Hence, we finally obtain

C(k1, k2) =
C0(ν)

(1 + G1k2
1 + G2k2

2 + G12k1k2)ν+1
, (62)

whereC0(ν) is a function ofν and the variance of the SRF.
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