
           
 

 

 

 

 

3. RESULTS 

2. MATERIALS & METHODS 

• Spatial variation: We include in the trend modeling the 

analytical solution for a system of multiple wells in an 

unconfined aquifer. This component of the trend is based on 

Thiem’s equation for an unconfined aquifer. The equation 

describes the relationship between the steady-state radial inflow 

into a pumping well and the drawdown. 

Geostatistical methods in association with auxiliary information in 

groundwater level applications provide: 

• Improved space-time visualization of the aquifer free surface 

• Maximization of the information gain for the quantification of 

groundwater level spatial variability.  

Such an application is implemented for a poorly gauged basin  

on the island of Crete (Greece). The level at 10 wells (green) is 

monitored between the years 1981 and 2003 bi-annually and in 

70 locations (red) for the wet season of 2003.  
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1. INTRODUCTION 
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where sw,i is the drawdown at the well face (m), K is the hydraulic 

conductivity around the pumping well and       (m) is the initial saturated 

thickness.  

These variables are not known at every well so uniform values are used. 

The optimal sw,i  is determined from a Linear regression analysis of the 

mean annual groundwater levels for a 30 year period. The rate of mean 

annual level decrease is estimated at 1.85m/yr, with the 95% confidence 

interval at [1.60 - 2.10]. The optimal K is determined by means of a 

Monte Carlo sensitivity analysis that focuses on the reproduction of the 

measured head values by means of leave-one-out cross validation and 

Residual Kriging (RK). The mean absolute error (MAE) is used as the 

criterion of performance. The hydraulic conductivity is sampled from a 

uniform distribution that extends between the minimum and maximum 

values, 0.00014 to 0.0014 m/s, for the area. The drawdown values are 

sampled from the uniform probability distribution over the 95% 

confidence interval. The hydraulic head trend function is then estimated 

for each combination of sw,i and K. The average pumping rates (m3/h) at 

the 70 wells of the study area are used.  

H(s) is the estimated hydraulic head, H0(s) is the initial hydraulic 

head before abstraction, K is the hydraulic conductivity, n is the 

number of wells (i=1…,n),                 is the distance of the 

estimation point from the i-th well, Q is the pumping rate, and Ri 

is the well’s radius of influence. The pumping wells contributing 

in the equation are those whose distance from the estimation 

point does not exceed their radius of influence. When pumping 

tests are not available, Ri is determined using empirical 

equations, subject to available hydrogeological field data, i.e.,  
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 m is the trend and               is the weight of  the temporal model. 0 1 

2004 Wet period 
highest raise 

Well No    AE (m)  

G1             2.56 

G2             3.05 

G3             2.05 

G4             2.08 

G5             1.56 

Well No    AE (m)  

G1             2.49 

G2             3.12 

G3             2.97 

G4             2.18 

G5             0.86 

2006 Dry period 
highest decrease 
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• Spatiotemporal variation: We can also proceed to perform 

spatiotemporal interpolation, approximating the spatiotemporal 

trend of the field data by multiplying the spatial and the temporal 

trend (3). Τhe first component is the temporal trend, which is 

approximated by applying an exponentially-weighted moving 

average filter in the mean annual groundwater levels, and the 

second is the spatial trend for the year 2003, which is 

approximated using Eq. 1.  

These Monte Carlo simulations 

show that the MAE is primarily 

sensitive to the variation of the 

hydraulic conductivity. Fig. 2 

demonstrates the dependence of 

the MAE on the hydraulic 

conductivity: a clear minimum is 

obtained for K = 0.00015 m/s.  

The most accurate results were produced using the flexible Spartan 

variogram family. Then we can proceed and perform spatial 

interpolation of the groundwater level in the basin using RK: combining 

the trend function with interpolation of the residuals .  

where η0 is the scale factor, η1 is the rigidity coefficient, β1 is a 

dimensionless wavenumber, β2 and ω1,2, are dimensionless damping 

coefficients, ξ is a characteristic length, h = r/ξ is the normalized lag 

vector,               is its Euclidean norm and          is the variance.  | |h  h 2
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STRK combines the spatiotemporal trend with the interpolation of 

the residuals in the desired location in order to calculate the 

groundwater level in 5 measured locations for time periods after 

2003. Thus the proposed model is validated. 

4. CONCLUSIONS 

Physical laws incorporation in stochastic hydrology aspects and 

in classical geostatistics gave the idea to introduce a spatial 

trend model that could incorporate in the trend a physical law 

that describes the basin’s aquifer behavior with respect to 

groundwater level and pumping activity. 

Fig. 1 

Fig. 2 

Fig. 3 
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• Monte Carlo approaches can provide valuable information in 

applications with limited data availability and improve estimations  

• The novel Spartan family-based spatiotemporal covariance 

function modeled the data with higher accuracy than a non-

separable function, based on the diffusion equation, overall by 

20%  

• The incorporation of a physical law in the trend provided an 

efficient tool for spatial and for spatiotemporal interpolation.  

Then, we apply a spatiotemporal geostatistical analysis of the 

residuals using space-time Residual Kriging (STRK). We model 

the variogram of the residuals with the new non-separable 

theoretical spatiotemporal variogram function, which is based on 

the Spartan variogram family. The function is  derived by 

substituting h with the following equation in its spatial form (2), 

Research supported by the project SPARTA 1591: “Development of Space-Time Random Fields based on Local Interaction Models and Applications in the Processing of Spatiotemporal Datasets”. “SPARTA” is implemented under the “ARISTEIA” Action of the 

operational programme Education and Lifelong Learning and is co-funded by the European Social Fund (ESF) and National Resources.  


