

SSRF Covariance Models

Covariance

Covariance Models Based on Local Interaction (Spartan) Functionals

Dionisis Hristopulos

Department of Mineral Resources Engineering, Technical University of Crete

SIAM CONFERENCE ON COMPUTATIONAL SCIENCE & ENGINEERING (CSE13), Session MS46 Boston, February 25, 2013

Outline

SSRF Covariance Models

Environmental Applications

- Need for flexible positive-definite kernel functions [Genton, 2002]
- Faster interpolation and simulation methods for "big data"

Motivation

Groundwater monitoring

sparsely monitored

Groundwater level estimation in

Response to environmental threats Radioactivity monitoring and emergency warning system [Dubois et al., 2011]

Motivation

Applications in Mineral Reserves Estimation

SSRF Covariance Models

Coal reserves & quality

Modeling of complex geological structures: Interpolation and simulation

Estimated lower calorific value (kcal/kg) — Amyndeo Mine (Western Macedonia)

1/35

Fluctuation-Gradient-Curvature (FGC) SSRF

 $f[\phi(\mathbf{s})] = \frac{e^{-\mathcal{H}[\phi(\mathbf{s})]}}{Z}, \ \mathcal{H}[\phi(\mathbf{s})]:$ energy functional,

 $\mathcal{H}_{\rm fgc}[\phi(\mathbf{s})] = \frac{1}{2\eta_0\xi^d} \int_{\mathcal{D}} d\mathbf{s} \left\{ [\phi(\mathbf{s})]^2 + \eta_1 \, \xi^2 \, [\nabla\phi(\mathbf{s})]^2 + \xi^4 \, \left[\nabla^2 \phi(\mathbf{s}) \right]^2 \right\}$

SSRF Covariance Gibbs probability density function (PDF) Models

Local interaction models

 η_0 : scale, η_1 : stiffness, ξ : characteristic length; k_c : spectral cutoff

• FGC energy functional - for simplicity assume $\mathbb{E}[\phi(\mathbf{s})] = 0$

• Correlation (covariance) function: $G(\mathbf{r}) = \mathbb{E} \left[\phi(\mathbf{s} + \mathbf{r}) \phi(\mathbf{s}) \right]$

Properties: Gaussian, zero-mean, stationary, isotropic SRF

FGC-SSRF Covariance & Spectral Density

SSRF Covariance Models

• Covariance: $G(\mathbf{r}) = \mathbb{E} [\phi(\mathbf{s}) \phi(\mathbf{s} + \mathbf{r})]$. Fourier transform pair:

$$ilde{G}(\mathbf{k}) = \int d\mathbf{r} \; e^{-\jmath \mathbf{k} \cdot \mathbf{r}} \; G(\mathbf{r}),$$

SSRF Covariance Functions

$$G(\mathbf{r}) = rac{1}{(2 \pi)^d} \int d\mathbf{k} \; e^{\jmath \mathbf{k} \cdot \mathbf{r}} \; ilde{G}(\mathbf{k}).$$

Covariance spectral density:

$$\tilde{G}(k) = \frac{\mathbb{1}_{k_c \ge \kappa}(\kappa) \eta_0 \xi^d}{1 + \eta_1 \kappa^2 \xi^2 + \kappa^4 \xi^4}, \ \kappa = \|\mathbf{k}\|, \ \mathbb{1}_B(\cdot) : \text{indicator function}$$

Permissibility conditions (Bochner's theorem) Hristopulos [2003]:

For any k_c : $\eta_0 > 0, \xi > 0, \eta_1 > -2$

For finite k_c : $\eta_1 < -2$, if $k_c \xi < \sqrt{rac{|\eta_1| - \Delta}{2}}$ $\Delta = \sqrt{\eta_1^2 - 4}$

6/35

Covariance Spectral Density

FGC-SSRF Coefficients

SSRF Covariance

Functions

Covariance functions

2

Spectral Representation of Covariance **Functions**

SSRF Covariance Models

Motivation

SSRF

Covariance

Functions

Spectral Representation (Inverse Hankel transform)

 For isotropic covariance functions the following holds: [Schoenberg, 1938] d/2 . Z 11 11X 1.

$$G(\mathbf{r}) = \frac{\eta_0 \,\xi^d \,\|\mathbf{r}\|}{(2\pi \|\mathbf{r}\|)^{d/2}} \int_0^{\kappa_c} d\kappa \frac{\kappa^{d/2} J_{d/2-1}(\kappa \|\mathbf{r}\|)}{1 + \eta_1(\kappa\xi)^2 + (\kappa\xi)^4}$$

• $J_{d/2-1}(||\mathbf{r}||)$: Bessel function of the first kind of order d/2 - 1

• For $k_c \to \infty$ (limit of infinite UV cutoff) the spectral integral exists for *d* < 3

SSRF Covariance function d = 1

SSRF Covariance Models

Motivation

SSRF

Covariance

Functions

Unlimited band, $k_{ m c} ightarrow \infty$ [Hristopulos and Elogne, 2007]

$$\begin{split} G(h) &= \frac{\eta_0}{4} e^{-h\beta_2} \left[\frac{\cos(h\beta_1)}{\beta_2} + \frac{\sin(h\beta_1)}{\beta_1} \right], \quad |\eta_1| < 2\\ G(h) &= \eta_0 \frac{(1+h)}{4 e^h}, \quad \eta_1 = 2\\ G(h) &= \frac{\eta_0}{2 \Delta} \left(\frac{e^{-h\omega_1}}{\omega_1} - \frac{e^{-h\omega_2}}{\omega_2} \right), \quad \eta_1 > 2 \end{split}$$

• $h = |r|/\xi$: normalized lag

•
$$\beta_{1,2} = \left(\frac{|2\mp\eta_1|}{4}\right)^{1/2}, \quad \omega_{1,2} = \left(\frac{|\eta_1\mp\Delta|}{2}\right)^{1/2}, \quad \Delta = |\eta_1^2 - 4|^{\frac{1}{2}}$$

SSRF Covariance function d = 1

SSRF Covariance Models

SSRF Covariance

Functions

Covariance

SSRF

Models

SSRF

Covariance

Functions

9/35

SSRF Covariance function d = 2

Covariance

٥

Unlimited band, $k_{\rm c} \rightarrow \infty$ [Hristopulos, 2013]

$$G(h) = \frac{\eta_0 \Im [K_0(hz_+)]}{\pi \sqrt{4 - \eta_1^2}}, \quad |\eta_1| < 2$$
$$G(h) = \left(\frac{\eta_0 h}{4\pi}\right) K_{-1}(h), \quad \eta_1 = 2$$
$$G(h) = \frac{\eta_0 [K_0(hz_+) - K_0(hz_-)]}{2\pi \sqrt{\eta_1^2 - 4}}, \quad \eta_1 > 2$$

• $h = \|\mathbf{r}\|/\xi$, ः Imaginary part

$$z_{\pm} = \sqrt{-t_{\pm}^*}, \quad t_{\pm}^* = \left(-\eta_1 \pm \sqrt{\eta_1^2 - 4}\right)/2$$

• $K_{\nu}(z)$: modified Bessel function of the second kind and order ν

SSRF Covariance function d = 2

Covariance

SSRF

Covariance

Covariance

Functions

SSRF Covariance function d = 3

SSRF Covariance Models

Unlimited band, $k_c \rightarrow \infty$ [Hristopulos and Elogne, 2007]

 $G(h) = \eta_0 \, rac{e^{-heta_2}}{\Delta} \left[rac{\sin{(heta_1)}}{h}
ight], \quad |\eta_1| < 2$ $G(h) = rac{\eta_0}{4} e^{-h}, \quad \eta_1 = 2$ $G(h) = rac{1}{2\Delta}\left(rac{e^{-h\omega_1}-e^{-h\omega_2}}{h}
ight), \quad \eta_1 > 2$

13/35

15/35

SSRF Covariance function d = 3

SSRF Covariance Functions

Covariance

FGC-SSRF Realizations d = 1

 $\eta_1 = -1.999$ $\eta_1 = -1$ Five SRF states for n, =-1.999 Five SRF states for n, =-1 State 1 5 0 5 SSRF Covariance C O C Functions Covariance 400 300 300 20

400

500

FGC-SSRF Realizations d = 1

SSRF Covariance Models

FGC-SSRF Length Scales

SSRF Covariance Models

FGC-SSRF covariance functions have non-linear dependence of correlation scales on model parameters [*Hristopulos and Žukovič, 2011*]

18/35

FGC-SSRF Length Scales

SSRF Covariance Models

Local interaction models SSRF Covariance Functions KL Expansions

Inverse Covarianc

Fast

Conclusio

References

FGC-SSRF covariance functions have non-linear dependence of correlation scales on model parameters [*Hristopulos and Žukovič, 2011*]

17/35

Karhunen-Loève Expansions of SSRFs

SSRF Covariance

Models

KL

Expansions

Covariance

Karhunen-Loève Theorem

A second-order φ(s) with continuous covariance covariance G(s, s') can be expanded on a closed and bounded domain D as:

$$\psi(\mathbf{s}) = m_{\mathrm{x}}(\mathbf{s}) + \sum_{m=1}^{\infty} \sqrt{\lambda_m} c_m \psi_m(\mathbf{s}).$$

The convergence is uniform on \mathcal{D} .

2 The λ_m and $\psi_m(\mathbf{s})$ are respectively, *eigenvalues and eigenfunctions* of the covariance operator, that satisfy the Fredholm integral equation

$$\int_{\mathcal{D}} d\mathbf{s}' G(\mathbf{s}, \mathbf{s}') \, \psi_m(\mathbf{s}') = \lambda_m \, \psi_m(\mathbf{s}').$$

③ The *c_m* are *zero-mean*, *uncorrelated random variables*, i.e, $\mathbb{E}[c_m] = 0$ and $\mathbb{E}[c_m c_n] = \delta_{n,m}$, ∀*n*, *m* ∈ ℕ.

Karhunen-Loève Expansions of SSRFs

SSRF Covariance Models

Iotivation

Local nteraction models

SSRF Covariance Functions

KL Expansions

> nverse Covariance Kernel

interpolatio

References

Simulations on Square Domain

- Square lattice 100 \times 100, Modes used: 100 \times 100 wave-vectors
- Pinned boundaries (no fluctuations)
- SSRF eigenvalues

$$\lambda_m = \frac{\eta_0 \xi^2}{1 + \eta_1 \xi^2 \|\mathbf{k}_m\|^2 + \xi^4 \|\mathbf{k}_m\|^4}, \ \mathbf{k}_m = \left(\frac{2\pi n_{m,1}}{L}, \frac{2\pi n_{m,2}}{L}\right)^T$$

SSRF K-L eigenfunctions

0.26

0.24

0.22

0.2

0.18 © 0.16 0.14

$$\psi_m(s_1, s_2) = \frac{1}{L} \sin(k_{m,1} s_1) \sin(k_{m,2} s_2)$$

Karhunen-Loève Expansions of SSRFs

22/35

Karhunen-Loève Expansions of SSRFs

SRRF Variance Evolution versus number of ordered eigenvalues

Motivation

interactior models

SSRF Covariance Functions

KL Expansions

Covariance Kernel Fast interpolatio

- η₁=-1.5

η_=0

– η₁=1.5

η,=-15

21/35

SSRF

Covariance

Models

SSRF Inverse Covariance Kernel with Ultraviolet Cutoff

• Spectral integral of $\tilde{\mathbb{J}}_{\mathcal{S}}(\|\mathbf{k}\|) = (\eta_0 \xi^d)^{-1} \left[1 + \eta_1(\xi \|\mathbf{k}\|)^2 + c_2(\xi \|\mathbf{k}\|)^4\right]$,

$$\mathbb{J}_{\mathcal{S}}(\mathbf{r};\boldsymbol{\theta}) = \frac{\|\mathbf{r}\|}{(2\pi\|\mathbf{r}\|)^{d/2}} \int_0^{k_c} d\|\mathbf{k}\| \|\mathbf{k}\|^{d/2} J_{d/2-1}(\|\mathbf{k}\|\|\mathbf{r}\|) \, \tilde{\mathbb{J}}_{\mathcal{S}}(\|\mathbf{k}\|;\boldsymbol{\theta})$$

Lommel functions

$$z^{2} \frac{d^{2}w(z)}{dz^{2}} + z \frac{dw(z)}{dz} + (z^{2} - \nu^{2}) w(z) = z^{\mu+1}$$

 $S_{\mu,\nu}(z) = z^{\mu-1} \left[1 - \frac{(\mu-1)^2 - \nu^2}{z^2} + \frac{[(\mu-1)^2 - \nu^2][(\mu-3)^2 - \nu^2]}{z^4} - \dots \right]$

• If $\mu - \nu = 2l + 1$ the following Lommel series terminates after l + 1 terms

Inverse Covariance Kernel

Kernel

terpolation

onclusions

leferences

SSRF Inverse Covariance Kernel with Ultraviolet Cutoff

following tripartite sum, where $u_c = k_c \xi$, $z = k_c ||\mathbf{r}||$, and $\nu = d/2 - 1$

SSRF Covariance Models

Theorem

Motivation

nteraction models

Covariance Functions

KL Expansions

Inverse Covariance Kernel

Fast interpolation Conclusions

Poforonco

 $\mathbb{J}_{S}(z;\theta) = \sum_{l=0,1,2} \frac{g_{l}(\theta)}{z^{2\nu+2l+1}} \left[(2\nu+2l)J_{\nu}(z) S_{\nu+2l,\nu-1}(z) - J_{\nu-1}(z) S_{\nu+2l+1,\nu}(z) \right]$

In d \geq 2, the SSRF inverse covariance kernel $\mathbb{J}_{S}(z; \theta)$ is given by means of the

$$g_0(\theta) = \frac{k_c^d}{(2\pi)^{d/2} \eta_0 \, \xi^d}, \ g_1(\theta) = \eta_1 \, u_c^2 \, g_0(\theta), \ g_2(\theta) = u_c^4 \, g_0(\theta),$$

The above equations define a positive semidefinite kernel function for $\eta_1 > -2$. In particular, the value at the origin is

$$\mathbb{J}_{\mathcal{S}}(0;\theta) = \frac{g_0(\theta)}{2^{\nu+1}\,\Gamma(\nu+2)} \left[1 + \eta_1\,u_c^2\,\left(\frac{\nu+1}{\nu+2}\right) + u_c^4\,\left(\frac{\nu+1}{\nu+3}\right)\right],$$

25/35

SSRF Inverse Covariance Kernel with Ultraviolet Cutoff

SSRF Covariance Models

Motivation

models

Covariance Functions

Expansions Inverse Covariance

Kernel

Conclusion

References

SSRF Inverse Covariance Kernel with Ultraviolet Cutoff

Fast optimal interpolation

SSRF Covariance Models

Theorem

Let $\mathbf{X}_s = (X_1, ..., X_N)^T$ a vector of measurements at \mathbf{s}_n , n = 1, ..., N, and $X_p = X_{N+1}$ the SSRF value at unmeasured location \mathbf{s}_{N+1} . Assume that the data are samples of the SSRF with the energy functional

$$\mathcal{H}_{ ext{fgc}}[\mathbf{X}_{s;
ho}; oldsymbol{ heta}] = rac{1}{2} \, \mathbf{X}_{s;
ho}^{ au} \, \mathbf{J}(oldsymbol{ heta}) \, \mathbf{X}_{s;
ho} \, \mathbf{J}(oldsymbol{ heta}) \, \mathbf{J}($$

where $\mathbf{X}_{s;p} = (X_1, \dots, X_N, X_p)^T$, and $\mathbf{J}(\theta)$ is the inverse covariance (precision) matrix. The mode estimate \hat{X}_p which maximizes the joint pdf is given by

$$\hat{X}_{\rho} = -\frac{\mathbf{J}_{\rho;s}^{T}(\boldsymbol{\theta}) \, \mathbf{X}_{s}}{J_{\rho;\rho}(\boldsymbol{\theta})} = -\sum_{i=1}^{N} \frac{J_{\rho,i}(\boldsymbol{\theta}) \, X_{i}}{J_{\rho;\rho}(\boldsymbol{\theta})}.$$
(1)

eferences

Fast interpolation

Grid Approximation of Continuum SSRF

On a grid with lattice step $a \to 0$: $\delta(\mathbf{s}_i - \mathbf{s}_j) \to \delta_{i,j} / \mathbf{v}_c, \mathbf{v}_c = a^d$.

 $\mathbb{J}_{\mathcal{S}}(\mathbf{r}_{\mathbf{n}};\boldsymbol{\theta}) = c_0 \left[1 - \eta_1 \left(\sum_{i=1}^d \frac{\xi^2}{a_i^2} \mathrm{D}_{\mathbf{n},i}^2 \right) + \left(\sum_{i=1}^d \sum_{j=1}^d \frac{\xi^4}{a_i^2 a_j^2} \mathrm{D}_{\mathbf{n},i}^2 \mathrm{D}_{\mathbf{n},j}^2 \right) \right] \delta(\mathbf{r}_{\mathbf{n}}).$

 $\delta_{\mathbf{n},i}[f(\mathbf{r}_n)] = f\left(\mathbf{r}_n + \frac{a_i}{2}\,\hat{\mathbf{e}}_i\right) - f\left(\mathbf{r}_n - \frac{a_i}{2}\,\hat{\mathbf{e}}_i\right), \ i = 1, \dots, d.$

 $\delta_{\mathbf{n}}^{2}[f(\mathbf{r}_{n})] = f(\mathbf{r}_{n} + a_{i} \hat{\mathbf{e}}_{i}) + f(\mathbf{r}_{n} - a_{i} \hat{\mathbf{e}}_{i}) - 2f(\mathbf{r}_{n}).$

SSRF Covariance Models

Fast interpolation

Inverse SSRF Covariance Kernel on Hypercubic Grid

SSRE Covariance Models

$$\mathbb{J}(\mathbf{r_n}; \boldsymbol{\theta}) = c_0 \left[\delta_{\mathbf{n}, \mathbf{0}} - \eta_1 \, \xi^2 \, S(\mathbf{r_n}) + \xi^4 \, C(\mathbf{r_n}) \right]$$

where the square gradient, $S(\mathbf{r}_n)$, and square curvature, $C(\mathbf{r}_n)$, are given by

$$S(\mathbf{r_n}) = \sum_{i=1}^{d} D_{\mathbf{n},i}^2, \quad C(\mathbf{r_n}) = \sum_{i=1}^{d} D_{\mathbf{n},i}^4 + \sum_{i=1}^{d} \sum_{j=1}^{d} D_{\mathbf{n},i}^2 D_{\mathbf{n},j}^2,$$

Truncating $S(\mathbf{r_n})$ and $C(\mathbf{r_n})$ at order 2p = 12, it follows that

$$S^{(12)}(\mathbf{r_n}) = \sum_{i=1}^d \delta_{\mathbf{n},i}^2 - \frac{\delta_{\mathbf{n},i}^4}{12} + \frac{\delta_{\mathbf{n},i}^6}{90} - \frac{\delta_{\mathbf{n},i}^8}{560} + \frac{\delta_{\mathbf{n},i}^{10}}{3150} - \frac{\delta_{\mathbf{n},i}^{12}}{16632},$$

$$C^{(12)}(\mathbf{r_n}) = \sum_{i=1}^{d} \left(\delta_{\mathbf{n},i}^4 - \frac{\delta_{\mathbf{n},i}^6}{6} + \frac{7 \, \delta_{\mathbf{n},i}^8}{240} - \frac{41 \, \delta_{\mathbf{n},i}^{10}}{7560} + \frac{479 \, \delta_{\mathbf{n},i}^{12}}{453600} \right) + \sum_{i=1}^{d} \sum_{j=1}^{d} \left(\delta_{\mathbf{n},i}^2 \delta_{\mathbf{n},j}^2 - \frac{\delta_{\mathbf{n},i}^2 \, \delta_{\mathbf{n},j}^4}{6} + \frac{\delta_{\mathbf{n},i}^2 \, \delta_{\mathbf{n},j}^{10}}{45} - \frac{\delta_{\mathbf{n},i}^2 \, \delta_{\mathbf{n},j}^8}{1575} + \frac{\delta_{\mathbf{n},i}^4 \, \delta_{\mathbf{n},j}^4}{144} - \frac{\delta_{\mathbf{n},i}^4 \, \delta_{\mathbf{n},j}^6}{540} + \frac{\delta_{\mathbf{n},i}^4 \, \delta_{\mathbf{n},j}^8}{3360} + \frac{\delta_{\mathbf{n},i}^6 \, \delta_{\mathbf{n},j}^6}{8100} \right).$$

30/35

SSRF Covariance Models

Fast interpolation

Inverse SSRF	Covariance	Kernel	on
Hypercubic Gr	id		

Table: Central finite differences of orders $2k, k = 1, \dots, 6$ on hypercubic grid with uniform step a = 1 in each orthogonal direction i = 1, ..., d. FD stands for *finite difference*. The f_n denotes any lattice function.

FD	Expressions
$\delta^2_{\mathbf{n},i} f_{\mathbf{n}} =$	$f_{\mathbf{n}+\hat{\mathbf{e}}_j} + f_{\mathbf{n}-\hat{\mathbf{e}}_j} - 2f_{\mathbf{n}}$
$\delta_{\mathbf{n},i}^{4} f_{\mathbf{n}} =$	$f_{\mathbf{n}+2\hat{\mathbf{e}}_j} + f_{\mathbf{n}-2\hat{\mathbf{e}}_j} - 4f_{\mathbf{n}+\hat{\mathbf{e}}_j} - 4f_{\mathbf{n}-\hat{\mathbf{e}}_j} + 6f_{\mathbf{n}}$
$\delta_{\mathbf{n},i}^{6} \mathbf{f}_{\mathbf{n}} =$	$f_{n+3\hat{e}_{j}} + f_{n-3\hat{e}_{j}} - 6f_{n+2\hat{e}_{j}} - 6f_{n-2\hat{e}_{j}} + 15f_{n+\hat{e}_{j}} + 15f_{n-\hat{e}_{j}} - 20f_{n-2\hat{e}_{j}}$
$\delta_{\mathbf{n},i}^{8} f_{\mathbf{n}} =$	$f_{n+4\hat{e}_{j}} + f_{n-4\hat{e}_{j}} - 8f_{n+3\hat{e}_{j}} - 8f_{n-3\hat{e}_{j}} + 28f_{n+2\hat{e}_{j}} + 28f_{n-2\hat{e}_{j}} - 56f_{n+\hat{e}_{j}}$
	$-56f_{\mathbf{n}-\hat{\mathbf{e}}_{i}}+70f_{\mathbf{n}}$
$\delta_{\mathbf{n},i}^{10} f_{\mathbf{n}} =$	$f_{n_i+5,n_j} + f_{n_j-5,n_j} - 10f_{n+4\hat{e}_j} - 10f_{n-4\hat{e}_j} + 45f_{n+3\hat{e}_j} + 45f_{n-3\hat{e}_j} - 120f_{n+2\hat{e}_j}$
	$-120f_{n-2\hat{e}_{i}}+210f_{n+\hat{e}_{i}}+210f_{n-\hat{e}_{i}}-252f_{n}$
$\delta_{\mathbf{n},i}^{12} f_{\mathbf{n}} =$	$f_{n_i+6,n_j} + f_{n_i-6,n_j} - 12f_{n_i+5,n_j} - 12f_{n_i-5,n_j} + 66f_{\mathbf{n}+4\hat{\mathbf{e}}_i} + 66f_{\mathbf{n}-4\hat{\mathbf{e}}_i} - 220f_{\mathbf{n}+3\hat{\mathbf{e}}_i}$
	$-220f_{n-3\hat{\mathbf{e}}_{j}} + 495f_{n+2\hat{\mathbf{e}}_{j}} + 495f_{n-2\hat{\mathbf{e}}_{j}} - 792f_{n+\hat{\mathbf{e}}_{j}} - 792f_{n-\hat{\mathbf{e}}_{j}} + 924f_{n}$

Fast

29/35

31/35

interpolation

Inverse SSRF Covariance Kernel on Hypercubic Grid

Conclusions and Future Directions

SSRF Covariance Models

ocal

SSRF Covariance Functions

Expansion Inverse Covarianc

Kernel Fast

Conclusions

References

- We presented three-parameter, positive-definite, isotropic covariance models based on local interaction "energy" (Spartan) functionals
- SSRF models lead to fast (linear complexity) interpolation on regular grids and on unstructured grids as well [Hristopulos and Elogne, 2009]
- A new family of four-parameter, positive-definite kernels valid in *d* ≥ 2 based on Lommel functions is proposed
- Continuing research involves extensions to: spatial non-homogeneity, space-time correlations, and non-Gaussian dependence

Thank you for your attention!

SSRF Covariance Models

otivation

Research funded by the project SPARTA 1591

implemented under the "ARISTEIA" Action of the operational programme "Education and Lifelong Learning" co-funded by the European Social Fund (ESF) and National Resources.

Ευρωπαϊκή Ένωση

ΞΕΣΠΑ

34/35

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ

ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ επέγδυση στην μοιγωνία, της γγώσης

ΥΠΟΥΡΓΕΊΟ ΠΑΙΔΕΊΑΣ & ΟΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ & ΑΘΛΗΤΙΣΜΟΥ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ

Με τη συνγοηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωση

_ mansions

verse ovariance

erpolation

Conclusions

eferences

33/35

References

SSRF Covariance Models

Motivatio

nteraction models

SSRF Covariance

KL Expansions

Inverse Covariance

Fast nterpolatio

onclusions

References

- M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, DC, 1972.
- G. Dubois, D. Cornford, D. Hristopulos, E. Pebesma, and J. Pilz. Introduction to this special issue on geoinformatics for environmental surveillance. *Computers and Geosciences*, 37(3):277–279, 2011.
- M. G. Genton. Classes of kernels for machine learning: a statistics perspective. Journal of Machine Learning Research, 2:299–312, March 2002. URL http://dl.acm.org/citation.cfm?id=944790.944815.
- F. B. Hildebrand. Introduction to numerical analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York. 2nd. edition, 1974.
- D. Hristopulos. Spartan Gibbs random field models for geostatistical applications. SIAM Journal of Scientific Computing, 24(6):2125–2162, 2003.
- D. Hristopulos and S. Elogne. Analytic properties and covariance functions of a new class of generalized Gibbs random fields. *IEEE Transactions on Information Theory*, 53(12):4667 – 4679, 2007.
- D. T. Hristopulos. Positive Semidefinite Functions and Karhunen-Loève Expansions Related to Spartan Random Fields. SIAM Journal on Uncertainty Quantification, in review, 2013.
- D. T. Hristopulos and S. N. Elogne. Computationally efficient spatial interpolators based on Spartan spatial random fields. 57(9):3475–3487, 2009.
- D. T. Hristopulos and M. Žukovič. Relationships between correlation lengths and integral scales for covariance models with more than two parameters. *Stochastic Environmental Research and Risk Assessment*, 25 (1):11–19, 2011.
- I. J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics, 39(4):811–841, 1938.
- E. A. Varouchakis and D. T. Hristopulos. Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables. Advances in Water Resources, 52:34–49, 2013. URL DOI:10.1016/j.advwatres.2012.08.002.