Covariance Models Based on Local Interaction (Spartan) Functionals

Dionisis Hristopulos

Department of Mineral Resources Engineering, Technical University of Crete
Siam Conference on Computational Science \& Engineering (CSE13), Session MS46

Boston, February 25, 2013

- Need for flexible positive-definite kernel functions [Genton, 2002]
- Faster interpolation and simulation methods for "big data"

Environmental Applications

SSRF Covariance
Models Models

Groundwater monitoring

Groundwater level estimation in sparsely monitored basins [Varouchakis and Hristopulos, 2013];
Spatiotemporal variability estimates

Response to environmental threats
Radioactivity monitoring and emergency warning system [Dubois et al., 2011]

Outline

SSRF
Covarianc Covariance
Models Models
(7) Conclusions

Applications in Mineral Reserves Estimation

Coal reserves \& quality
Modeling of complex geological structures: Interpolation and simulation

Estimated lower calorific value (kcal/kg) - Amyndeo
Mine (Western Macedonia)

Fluctuation-Gradient-Curvature (FGC) SSRF

FGC-SSRF Coefficients

$\eta_{0}:$ scale, $\eta_{1}:$ stiffness, ξ : characteristic length; $k_{c}:$ spectral cutoff

Covariance Spectral Density

SSRF Covariance Models

Motivation Local
interactio models SSRF SSRF
Covariance Functions unctions Expansions Inverse Covariance Kernel Fast interpolation Conclusions References
\qquad

FGC-SSRF Covariance \& Spectral Density

- Covariance: $G(\mathbf{r})=\mathbb{E}[\phi(\mathbf{s}) \phi(\mathbf{s}+\mathbf{r})]$. Fourier transform pair:

$$
\tilde{G}(\mathbf{k})=\int d \mathbf{r} e^{-\jmath \mathbf{k} \cdot \mathbf{r}} G(\mathbf{r})
$$

$$
G(\mathbf{r})=\frac{1}{(2 \pi)^{d}} \int d \mathbf{k} e^{\jmath^{\mathbf{k} \cdot \mathbf{r}}} \tilde{G}(\mathbf{k})
$$

- Covariance spectral density:

$$
\tilde{G}(k)=\frac{\mathbb{1}_{k_{\mathrm{c}} \geq \kappa}(\kappa) \eta_{0} \xi^{d}}{1+\eta_{1} \kappa^{2} \xi^{2}+\kappa^{4} \xi^{4}}, \kappa=\|\mathbf{k}\|, \mathbb{1}_{B}(\cdot) \text { : indicator function, }
$$

- Permissibility conditions (Bochner's theorem) Hristopulos [2003]:

$$
\begin{array}{ll}
\text { For any } k_{c} \text { : } & \text { For finite } k_{c} \text { : } \\
\eta_{0}>0, \xi>0, \eta_{1}>-2 & \eta_{1}<-2, \text { if } k_{c} \xi<\sqrt{\frac{\left|\eta_{1}\right|-\Delta}{2}} \\
& \Delta=\sqrt{\eta_{1}^{2}-4}
\end{array}
$$

Covariance functions

Covariance ($d=2$): Positive stiffness

Covariance $(d=2)$: Negative stiffness

Spectral Representation of Covariance

 Functions
Spectral Representation (Inverse Hankel transform)

- For isotropic covariance functions the following holds: [Schoenberg, 1938]

$$
G(\mathbf{r})=\frac{\eta_{0} \xi^{d}\|\mathbf{r}\|}{(2 \pi\|\mathbf{r}\|)^{d / 2}} \int_{0}^{k_{\mathrm{c}}} d \kappa \frac{\kappa^{d / 2} J_{d / 2-1}(\kappa\|\mathbf{r}\|)}{1+\eta_{1}(\kappa \xi)^{2}+(\kappa \xi)^{4}}
$$

- $J_{d / 2-1}(\|\mathbf{r}\|)$: Bessel function of the first kind of order d/2-1
- For $k_{\mathrm{c}} \rightarrow \infty$ (limit of infinite UV cutoff) the spectral integral exists for $d \leq 3$ -

Motivation Local
interactio models SSRF Covariance Functions

KL
Expansions Inverse Covariance Kernel Fast interpolation References

SSRF Covariance function $d=1$

SSRF Covariance function $d=1$

Unlimited band, $k_{\mathrm{c}} \rightarrow \infty$ [Hristopulos and Elogne, 2007]

$$
\begin{aligned}
& G(h)=\frac{\eta_{0}}{4} e^{-h \beta_{2}}\left[\frac{\cos \left(h \beta_{1}\right)}{\beta_{2}}+\frac{\sin \left(h \beta_{1}\right)}{\beta_{1}}\right], \quad\left|\eta_{1}\right|<2 \\
& G(h)=\eta_{0} \frac{(1+h)}{4 e^{h}}, \quad \eta_{1}=2 \\
& G(h)=\frac{\eta_{0}}{2 \Delta}\left(\frac{e^{-h \omega_{1}}}{\omega_{1}}-\frac{e^{-h \omega_{2}}}{\omega_{2}}\right), \quad \eta_{1}>2
\end{aligned}
$$

- $h=|r| / \xi$: normalized lag,
- $\beta_{1,2}=\left(\frac{\left|2 \mp \eta_{1}\right|}{4}\right)^{1 / 2}, \quad \omega_{1,2}=\left(\frac{\left|\eta_{1} \mp \Delta\right|}{2}\right)^{1 / 2}, \quad \Delta=\left|\eta_{1}^{2}-4\right|^{\frac{1}{2}}$

SSRF Covariance function $d=2$

Unlimited band, $k_{\mathrm{c}} \rightarrow \infty$ [Hristopulos, 2013]

$$
\begin{array}{rr}
G(h)=\frac{\eta_{0} \Im\left[K_{0}\left(h z_{+}\right)\right]}{\pi \sqrt{4-\eta_{1}^{2}}}, & \left|\eta_{1}\right|<2 \\
G(h)=\left(\frac{\eta_{0} h}{4 \pi}\right) K_{-1}(h), & \eta_{1}=2 \\
G(h)=\frac{\eta_{0}\left[K_{0}\left(h z_{+}\right)-K_{0}\left(h z_{-}\right)\right]}{2 \pi \sqrt{\eta_{1}^{2}-4}}, & \eta_{1}>2
\end{array}
$$

- $h=\|\mathbf{r}\| / \xi, \quad$ §: Imaginary part
- $z_{ \pm}=\sqrt{-t_{ \pm}^{*}}, \quad t_{ \pm}^{*}=\left(-\eta_{1} \pm \sqrt{\eta_{1}^{2}-4}\right) / 2$
- $K_{\nu}(z)$: modified Bessel function of the second kind and order ν

SSRF Covariance function $d=2$

SSRF Covariance function $d=3$

SSRF Covariance function $d=3$

Unlimited band, $k_{\mathrm{c}} \rightarrow \infty$ [Hristopulos and Elogne, 2007]

$$
\begin{aligned}
G(h)=\eta_{0} \frac{e^{-h \beta_{2}}}{\Delta}\left[\frac{\sin \left(h \beta_{1}\right)}{h}\right], & \left|\eta_{1}\right|<2 \\
G(h)=\frac{\eta_{0}}{4} e^{-h}, & \eta_{1}=2 \\
G(h)=\frac{1}{2 \Delta}\left(\frac{e^{-h \omega_{1}}-e^{-h \omega_{2}}}{h}\right), & \eta_{1}>2
\end{aligned}
$$

- $h=\|\mathbf{r}\| / \xi$,
- $\beta_{1,2}=\left(\frac{\left|2 \mp \eta_{1}\right|}{4}\right)^{1 / 2}, \quad \omega_{1,2}=\left(\frac{\left|\eta_{1} \mp \Delta\right|}{2}\right)^{1 / 2}, \quad \Delta=\left|\eta_{1}^{2}-4\right|^{\frac{1}{2}}$

FGC-SSRF Realizations $d=1$

FGC-SSRF Length Scales

FGC-SSRF covariance functions have non-linear dependence of correlation scales on model parameters [Hristopulos and Žukovič, 2011]

Definitions

$$
\ell_{c} \doteq\left[\frac{\int d \mathbf{r} G(r)}{G(0)}\right]^{1 / d}=A_{d} \xi
$$

(2) Correlation length:

$$
\begin{aligned}
& r_{c} \doteq\left[\frac{\int d \mathbf{r} r^{2} G(r)}{\int d \mathbf{r} G(r)}\right]^{1 / 2} \\
& =\sqrt{\left[\left|\frac{d^{2} \tilde{G}(k) / d k^{2}}{2 \tilde{G}(k)}\right|_{k=0}\right]}=\sqrt{\left|\eta_{1}\right| \xi}
\end{aligned}
$$

Integral range:

$$
\begin{aligned}
& \text { Definitions } \\
& \text { (1) Integral range: } \\
& \qquad \ell_{c} \doteq\left[\frac{\int d \mathbf{r} G(r)}{G(0)}\right]^{1 / d}=A_{d} \xi \\
& \text { (2) Correlation length: } \\
& \quad r_{c} \doteq\left[\frac{\int d \mathbf{r} r^{2} G(r)}{\int d \mathbf{r} G(r)}\right]^{1 / 2} \\
& =\sqrt{\left[\left|\frac{d^{2} \tilde{G}(k) / d k^{2}}{2 \tilde{G}(k)}\right|_{k=0}\right]}=\sqrt{\left|\eta_{1}\right|} \xi
\end{aligned}
$$

FGC-SSRF covariance functions have non-linear dependence of correlation scales on model parameters [Hristopulos and Žukovič, 2011]

FGC-SSRF Integral Range

Karhunen-Loève Expansions of SSRFs

Karhunen-Loève Theorem

(1) A second-order $\phi(\mathbf{s})$ with continuous covariance covariance $G\left(\mathbf{s}, \mathbf{s}^{\prime}\right)$ can be expanded on a closed and bounded domain \mathcal{D} as:

$$
\phi(\mathbf{s})=m_{\mathrm{x}}(\mathbf{s})+\sum_{m=1}^{\infty} \sqrt{\lambda_{m}} c_{m} \psi_{m}(\mathbf{s})
$$

The convergence is uniform on \mathcal{D}.
(2) The λ_{m} and $\psi_{m}(\mathbf{s})$ are respectively, eigenvalues and eigenfunctions of the covariance operator, that satisfy the Fredholm integral equation

$$
\int_{\mathcal{D}} d \mathbf{s}^{\prime} G\left(\mathbf{s}, \mathbf{s}^{\prime}\right) \psi_{m}\left(\mathbf{s}^{\prime}\right)=\lambda_{m} \psi_{m}\left(\mathbf{s}^{\prime}\right)
$$The c_{m} are zero-mean, uncorrelated random variables, i.e,

$\mathbb{E}\left[c_{m}\right]=0$ and $\mathbb{E}\left[c_{m} c_{n}\right]=\delta_{n, m}, \forall n, m \in \mathbb{N}$.

Karhunen-Loève Expansions of SSRFs

Simulations on Square Domain

- Square lattice 100×100, Modes used: 100×100 wave-vectors
- Pinned boundaries (no fluctuations)
- SSRF eigenvalues

$$
\lambda_{m}=\frac{\eta_{0} \xi^{2}}{1+\eta_{1} \xi^{2}\left\|\mathbf{k}_{m}\right\|^{2}+\xi^{4}\left\|\mathbf{k}_{m}\right\|^{4}}, \mathbf{k}_{m}=\left(\frac{2 \pi n_{m, 1}}{L}, \frac{2 \pi n_{m, 2}}{L}\right)^{T}
$$

- SSRF K-L eigenfunctions

$$
\psi_{m}\left(s_{1}, s_{2}\right)=\frac{1}{L} \sin \left(k_{m, 1} s_{1}\right) \sin \left(k_{m, 2} s_{2}\right)
$$

$\eta_{0}=2, \eta_{1}=-1.5, \xi=5$	$\eta_{0}=2, \eta_{1}=1.5, \xi=5$
$\eta_{0}=2, \eta_{1}=0, \xi=5$	$\eta_{0}=2, \eta_{1}=15, \xi=5$

SSRF Inverse Covariance Kernel with Ultraviolet Cutoff

- Spectral integral of $\tilde{\mathbb{J}}_{S}(\|\mathbf{k}\|)=\left(\eta_{0} \xi^{d}\right)^{-1}\left[1+\eta_{1}(\xi\|\mathbf{k}\|)^{2}+c_{2}(\xi\|\mathbf{k}\|)^{4}\right]$,

$$
\mathbb{J}_{S}(\mathbf{r} ; \boldsymbol{\theta})=\frac{\|\mathbf{r}\|}{(2 \pi\|\mathbf{r}\|)^{d / 2}} \int_{0}^{k_{\mathrm{c}}} d\|\mathbf{k}\|\|\mathbf{k}\|^{d / 2} J_{d / 2-1}(\|\mathbf{k}\|\|\mathbf{r}\|) \tilde{\mathbb{J}}_{S}(\|\mathbf{k}\| ; \boldsymbol{\theta}),
$$

- Lommel functions

$$
z^{2} \frac{d^{2} w(z)}{d z^{2}}+z \frac{d w(z)}{d z}+\left(z^{2}-\nu^{2}\right) w(z)=z^{\mu+1} .
$$

- If $\mu-\nu=2 I+1$ the following Lommel series terminates after $I+1$ terms $S_{\mu, \nu}(z)=z^{\mu-1}\left[1-\frac{(\mu-1)^{2}-\nu^{2}}{z^{2}}+\frac{\left[(\mu-1)^{2}-\nu^{2}\right]\left[(\mu-3)^{2}-\nu^{2}\right]}{z^{4}}-\ldots\right]$

SSRF Inverse Covariance Kernel with Ultraviolet Cutoff

Theorem

In $d \geq 2$, the SSRF inverse covariance kernel $\mathbb{J}_{S}(z ; \theta)$ is given by means of the following tripartite sum, where $u_{c}=k_{c} \xi, z=k_{c}\|\mathbf{r}\|$, and $\nu=d / 2-1$

$$
\begin{gathered}
\mathbb{J}_{S}(z ; \theta)=\sum_{I=0,1,2} \frac{g_{I}(\theta)}{z^{2 \nu+2 l+1}}\left[(2 \nu+2 I) J_{\nu}(z) S_{\nu+2 I, \nu-1}(z)-J_{\nu-1}(z) S_{\nu+2 I+1, \nu}(z)\right] \\
g_{0}(\theta)=\frac{k_{c}^{d}}{(2 \pi)^{d / 2} \eta_{0} \xi^{d}}, g_{1}(\theta)=\eta_{1} u_{c}^{2} g_{0}(\theta), g_{2}(\theta)=u_{c}^{4} g_{0}(\theta),
\end{gathered}
$$

The above equations define a positive semidefinite kernel function for $\eta_{1}>-2$. In particular, the value at the origin is

$$
\mathbb{J}_{S}(0 ; \theta)=\frac{g_{0}(\theta)}{2^{\nu+1} \Gamma(\nu+2)}\left[1+\eta_{1} u_{c}^{2}\left(\frac{\nu+1}{\nu+2}\right)+u_{c}^{4}\left(\frac{\nu+1}{\nu+3}\right)\right]
$$

SSRF Inverse Covariance Kernel with

 Ultraviolet Cutoff

SSRF Inverse Covariance Kernel with Ultraviolet Cutoff

SSRF Model Models Motivation Local
interactio models SSRF Covariance
Functions Functions KL
Expansions

Inverse Covariance Kernel Fast interpolation Conclusions References

Normalized inverse SSRF covariance function vs d
SSRF parameters are $\eta_{0}=1, \xi=1, \eta_{1}=2$, and $k_{c}=2$.

Fast optimal interpolation

Theorem

Let $\mathbf{X}_{s}=\left(X_{1}, \ldots, X_{N}\right)^{T}$ a vector of measurements at $\mathbf{s}_{n}, n=1, \ldots, N$, and $X_{p}=X_{N+1}$ the SSRF value at unmeasured location \mathbf{s}_{N+1}. Assume that the data are samples of the SSRF with the energy functional

$$
H_{\mathrm{fgc}}\left[\mathbf{X}_{s ; p} ; \boldsymbol{\theta}\right]=\frac{1}{2} \mathbf{X}_{s ; p}^{T} \mathbf{J}(\boldsymbol{\theta}) \mathbf{X}_{s ; p},
$$

where $\mathbf{X}_{s ; p}=\left(X_{1}, \ldots, X_{N}, X_{p}\right)^{T}$, and $\mathbf{J}(\theta)$ is the inverse covariance (precision) matrix. The mode estimate \hat{X}_{p} which maximizes the joint pdf is given by

$$
\begin{equation*}
\hat{X}_{p}=-\frac{\mathbf{J}_{p ; s}^{T}(\boldsymbol{\theta}) \mathbf{X}_{s}}{J_{p ; p}(\boldsymbol{\theta})}=-\sum_{i=1}^{N} \frac{J_{p, i}(\boldsymbol{\theta}) X_{i}}{J_{p ; p}(\boldsymbol{\theta})} . \tag{1}
\end{equation*}
$$

Grid Approximation of Continuum SSRF

$$
\mathbb{J}_{S}\left(\mathbf{r}_{\mathbf{n}} ; \boldsymbol{\theta}\right)=c_{0}\left[1-\eta_{1}\left(\sum_{i=1}^{d} \frac{\xi^{2}}{a_{i}^{2}} \mathrm{D}_{\mathbf{n}, i}^{2}\right)+\left(\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\xi^{4}}{a_{i}^{2} a_{j}^{2}} \mathrm{D}_{\mathbf{n}, i}^{2} D_{\mathbf{n}, j}^{2}\right)\right] \delta\left(\mathbf{r}_{\mathbf{n}}\right) .
$$

On a grid with lattice step $a \rightarrow 0: \delta\left(\mathbf{s}_{i}-\mathbf{s}_{j}\right) \rightarrow \delta_{i, j} / v_{c}, v_{c}=a^{d}$.

$$
\delta_{\mathbf{n}, i}\left[f\left(\mathbf{r}_{n}\right)\right]=f\left(\mathbf{r}_{n}+\frac{a_{i}}{2} \hat{\mathbf{e}}_{i}\right)-f\left(\mathbf{r}_{n}-\frac{a_{i}}{2} \hat{\mathbf{e}}_{i}\right), i=1, \ldots, d
$$

$$
\delta_{\mathbf{n}, i}^{2}\left[f\left(\mathbf{r}_{n}\right)\right]=f\left(\mathbf{r}_{n}+a_{i} \hat{\mathbf{e}}_{i}\right)+f\left(\mathbf{r}_{n}-a_{i} \hat{\mathbf{e}}_{i}\right)-2 f\left(\mathbf{r}_{n}\right)
$$

$\mathrm{D}_{\mathbf{n}, i}$ is related to the centered difference operator by [Hildebrand, 1974]

$$
a_{i} \mathrm{D}_{\mathbf{n}, i}=2 \sinh ^{-1}\left(\frac{\delta_{\mathbf{n}, i}}{2}\right)
$$

Taylor series expansions of $D_{\mathbf{n}, i}^{2}$ and $D_{\mathbf{n}, i}^{4}$ in terms of $\delta_{\mathbf{n}, i}$

$$
\begin{aligned}
& a_{i}^{2} \mathrm{D}_{\mathbf{n}, i}^{2}=\delta_{\mathbf{n}, i}^{2}-\frac{\delta_{\mathbf{n}, i}^{4}}{12}+\frac{\delta_{\mathbf{n}, i}^{6}}{90}-\frac{\delta_{\mathbf{n}, i}^{8}}{560}+\frac{\delta_{\mathbf{n}, i}^{10}}{3150}-\frac{\delta_{\mathbf{n}, i}^{12}}{16632}+O\left(\delta_{\mathbf{n}, i}^{14}\right) \\
& a_{i}^{4} \mathrm{D}_{\mathbf{n}, i}^{4}=\delta_{\mathbf{n}, i}^{4}-\frac{\delta_{\mathbf{n}, i}^{6}}{6}+\frac{7 \delta_{\mathbf{n}, i}^{8}}{240}-\frac{41 \delta_{\mathbf{n}, i}^{10}}{7560}+\frac{479 \delta_{\mathbf{n}, i}^{12}}{453600}+O\left(\delta_{\mathbf{n}, i}^{14}\right)
\end{aligned}
$$

Inverse SSRF Covariance Kernel on Hypercubic Grid

Table: Central finite differences of orders $2 k, k=1, \ldots, 6$ on hypercubic grid with uniform step $a=1$ in each orthogonal direction $i=1, \ldots, d$. FD stands for finite difference. The f_{n} denotes any lattice function.

FD	Expressions
$\delta_{\mathbf{n}, i}^{2} \mathrm{f}_{\mathbf{n}}=$	$f_{\mathrm{n}+\hat{\mathrm{e}}_{i}}+f_{\mathrm{n}-\hat{\mathbf{e}}_{i}}-2 f_{\mathrm{n}}$
$\delta_{\mathrm{n}, i}^{4} \mathrm{f}_{\mathbf{n}}=$	$f_{\mathbf{n}+2 \hat{e}_{i}}+f_{\mathbf{n}-2 \hat{e}_{i}}-4 f_{\mathbf{n}+\hat{\mathbf{e}}_{i}}-4 f_{\mathbf{n}-\hat{\mathbf{e}}_{i}}+6 f_{\mathrm{n}}$
$\delta_{\mathbf{n}, i}^{6} f_{\mathbf{n}}=$	$f_{\mathbf{n}+3 \hat{\mathbf{e}}_{i}}+f_{\mathbf{n}-3 \hat{\mathbf{e}}_{i}}-6 f_{\mathbf{n}+2 \hat{e}_{i}}-6 f_{\mathbf{n}-2 \hat{\mathbf{e}}_{i}}+15 f_{\mathbf{n}+\hat{\mathbf{e}}_{i}}+15 f_{\mathrm{n}-\hat{\mathbf{e}}_{i}}-20 f_{\mathrm{n}}$
$\delta_{\mathbf{n}, i}^{8} f_{\mathbf{n}}=$	$\begin{aligned} & f_{\mathbf{n}+4 \hat{e}_{i}}+f_{\mathbf{n}-4 \hat{\mathbf{e}}_{i}}-8 f_{\mathbf{n}+3 \hat{e}_{i}}-8 f_{\mathbf{n}-3 \hat{e}_{i}}+28 f_{\mathbf{n}+2 \hat{e}_{i}}+28 f_{\mathbf{n}-2 \hat{e}_{i}}-56 f_{\mathbf{n}+\hat{\mathbf{e}}_{i}} \\ & -56 f_{\mathbf{n}}-\hat{\mathbf{e}}_{i}+70 f_{\mathbf{n}} \end{aligned}$
$\delta_{\mathbf{n}, i}^{10} f_{\mathbf{n}}=$	$\begin{aligned} & f_{n_{i}+5, n_{j}}+f_{n_{i}}-5, n_{j}-10 f_{\mathbf{n}+4 \hat{e}_{i}}-10 f_{\mathbf{n}}-4 \hat{\mathbf{e}}_{i}+45 f_{\mathbf{n}+3 \hat{\mathbf{e}}_{i}}+45 f_{\mathbf{n}-3 \hat{\mathbf{e}}_{i}}-120 f_{\mathbf{n}+2 \hat{\mathbf{e}}_{i}} \\ & -120 f_{\mathbf{n}-2 \hat{e}_{i}}+210 f_{\mathbf{n}+\hat{\mathbf{e}}_{i}}+210 f_{\mathbf{n}-\hat{\mathbf{e}}_{i}}-252 f_{\mathbf{n}} \end{aligned}$
$\delta_{\mathbf{n}, i}^{12} \mathrm{f}_{\mathbf{n}}=$	$\begin{aligned} & f_{n_{i}+6, n_{j}}+f_{n_{i}}-6, n_{j}-12 f_{n_{i}+5, n_{j}}-12 f_{n_{i}}-5, n_{j}+66 f_{\mathbf{n}+4 \hat{e}_{j}}+66 f_{\mathbf{n}-4 \hat{\mathbf{e}}_{i}}-220 f_{\mathbf{n}+3 \hat{\mathbf{e}}_{i}} \\ & -220 f_{\mathbf{n}-3 \hat{e}_{j}}+495 f_{\mathbf{n}+2 \hat{\mathbf{e}}_{j}}+495 f_{\mathbf{n}-2 \hat{e}_{j}}-792 f_{\mathbf{n}+\hat{\mathbf{e}}_{j}}-792 f_{\mathbf{n}-\hat{\mathbf{e}}_{j}}+924 f_{\mathbf{n}} \\ & \hline \end{aligned}$

Inverse SSRF Covariance Kernel on

Hypercubic Grid

$$
\mathbb{J}\left(\mathbf{r}_{\mathbf{n}} ; \boldsymbol{\theta}\right)=c_{0}\left[\delta_{\mathbf{n}, \mathbf{0}}-\eta_{1} \xi^{2} S\left(\mathbf{r}_{\mathbf{n}}\right)+\xi^{4} C\left(\mathbf{r}_{\mathbf{n}}\right)\right]
$$

where the square gradient, $S\left(\mathbf{r}_{\mathbf{n}}\right)$, and square curvature, $C\left(\mathbf{r}_{\mathbf{n}}\right)$, are given by

$$
S\left(\mathbf{r}_{\mathbf{n}}\right)=\sum_{i=1}^{d} \mathrm{D}_{\mathbf{n}, i}^{2}, \quad C\left(\mathbf{r}_{\mathbf{n}}\right)=\sum_{i=1}^{d} \mathrm{D}_{\mathbf{n}, i}^{4}+\sum_{i=1}^{d} \sum_{j=1}^{d} \mathrm{D}_{\mathbf{n}, i}^{2} \mathrm{D}_{\mathbf{n}, j}^{2} .
$$

Truncating $S\left(\mathbf{r}_{\mathbf{n}}\right)$ and $C\left(\mathbf{r}_{\mathbf{n}}\right)$ at order $2 p=12$, it follows that

$$
\begin{gathered}
S^{(12)}\left(\mathbf{r}_{\mathbf{n}}\right)=\sum_{i=1}^{d} \delta_{\mathbf{n}, i}^{2}-\frac{\delta_{\mathbf{n}, i}^{4}}{12}+\frac{\delta_{\mathbf{n}, i}^{6}}{90}-\frac{\delta_{\mathbf{n}, i}^{8}}{560}+\frac{\delta_{\mathbf{n}, i}^{10}}{3150}-\frac{\delta_{\mathbf{n}, i}^{12}}{16632}, \\
C^{(12)}\left(\mathbf{r}_{\mathbf{n}}\right)=\sum_{i=1}^{d}\left(\delta_{\mathbf{n}, i}^{4}-\frac{\delta_{\mathbf{n}, i}^{6}}{6}+\frac{7 \delta_{\mathbf{n}, i}^{8}}{240}-\frac{41 \delta_{\mathbf{n}, i}^{10}}{7560}+\frac{479 \delta_{\mathbf{n}, i}^{12}}{453600}\right)+\sum_{i=1}^{d} \sum_{j=1}^{d}\left(\delta_{\mathbf{n}, i}^{2} \delta_{\mathbf{n}, j}^{2}-\frac{\delta_{\mathbf{n}, i}^{2} \delta_{\mathbf{n}, j}^{4}}{6}\right. \\
\left.+\frac{\delta_{\mathbf{n}, i}^{2} \delta_{\mathbf{n}, j}^{6}}{45}-\frac{\delta_{\mathbf{n}, i}^{2} \delta_{\mathbf{n}, j}^{8}}{280}+\frac{\delta_{\mathbf{n}, i}^{2} \delta_{\mathbf{n}, j}^{10}}{1575}+\frac{\delta_{\mathbf{n}, i}^{4} \delta_{\mathbf{n}, j}^{4}}{144}-\frac{\delta_{\mathbf{n}, i}^{4} \delta_{\mathbf{n}, j}^{6}}{540}+\frac{\delta_{\mathbf{n}, i}^{4} \delta_{\mathbf{n}, j}^{8}}{3360}+\frac{\delta_{\mathbf{n}, i}^{6} \delta_{\mathbf{n}, j}^{6}}{8100}\right)
\end{gathered}
$$

Inverse SSRF Covariance Kernel on Hypercubic Grid

Conclusions and Future Directions

- We presented three-parameter, positive-definite, isotropic covariance models based on local interaction "energy" (Spartan) functionals
- SSRF models lead to fast (linear complexity) interpolation on regular grids and on unstructured grids as well [Hristopulos and Elogne, 2009]
- A new family of four-parameter, positive-definite kernels valid in $d \geq 2$ based on Lommel functions is proposed
- Continuing research involves extensions to: spatial non-homogeneity, space-time correlations, and non-Gaussian dependence

References

M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, DC, 1972.
G. Dubois, D. Cornford, D. Hristopulos, E. Pebesma, and J. Pilz. Introduction to this special issue on geoinformatics for environmental surveillance. Computers and Geosciences, 37(3):277-279, 2011.
M. G. Genton. Classes of kernels for machine learning: a statistics perspective. Journal of Machine Learning Research, 2:299-312, March 2002. URL http://dl.acm.org/citation.cfm?id=944790.944815.
F. B. Hildebrand. Introduction to numerical analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York, 2nd. edition, 1974.
D. Hristopulos. Spartan Gibbs random field models for geostatistical applications. SIAM Journal of Scientific Computing, 24(6):2125-2162, 2003.
D. Hristopulos and S. Elogne. Analytic properties and covariance functions of a new class of generalized Gibbs random fields. IEEE Transactions on Information Theory, 53(12):4667-4679, 2007.
D. T. Hristopulos. Positive Semidefinite Functions and Karhunen-Loève Expansions Related to Spartan Random Fields. SIAM Journal on Uncertainty Quantification, in review, 2013.
D. T. Hristopulos and S. N. Elogne. Computationally efficient spatial interpolators based on Spartan spatial random fields. 57(9):3475-3487, 2009.
D. T. Hristopulos and M. Žukovič. Relationships between correlation lengths and integral scales for covariance models with more than two parameters. Stochastic Environmental Research and Risk Assessment, 25 (1):11-19, 2011.
I. J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics, 39(4):811-841, 1938.
E. A. Varouchakis and D. T. Hristopulos. Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables. Advances in Water Resources, 52:34-49, 2013. URL DOI:10.1016/j.advwatres.2012.08.002.

Thank you for your attention!

Research funded by the project SPARTA 1591
implemented under the "ARISTEIA" Action of the operational programme "Education and Lifelong Learning" co-funded by the European Social Fund (ESF) and National Resources.

ЕЕПА

