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Environmental Applications

Need for flexible positive-definite kernel functions [Genton, 2002]

Faster interpolation and simulation methods for “big data”

Groundwater monitoring

Groundwater level estimation in
sparsely monitored
basins [Varouchakis and
Hristopulos, 2013];
Spatiotemporal variability estimates

Response to environmental threats

Radioactivity monitoring and
emergency warning system [Dubois
et al., 2011]
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Applications in Mineral Reserves Estimation

Coal reserves & quality
Modeling of complex
geological structures:
Interpolation and simulation

Estimated lower calorific
value (kcal/kg) — Amyndeo
Mine (Western Macedonia)
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Fluctuation-Gradient-Curvature (FGC) SSRF

Gibbs probability density function (PDF)

f [φ(s)] =
e−H[φ(s)]

Z
, H[φ(s)] : energy functional,

FGC energy functional - for simplicity assume E [φ(s)] = 0

Hfgc[φ(s)] =
1

2η0ξd

∫
D

ds
{

[φ(s)]2 + η1 ξ
2 [∇φ(s)]2 + ξ4

[
∇2φ(s)

]2
}

Correlation (covariance) function: G(r) = E [φ(s + r)φ(s)]

Properties: Gaussian, zero-mean, stationary, isotropic SRF

FGC-SSRF Coefficients

η0 : scale, η1 : stiffness, ξ: characteristic length; kc : spectral cutoff
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FGC-SSRF Covariance & Spectral Density

Covariance: G(r) = E [φ(s)φ(s + r)]. Fourier transform pair:

G̃(k) =

∫
dr e−k·r G(r),

G(r) =
1

(2π)d

∫
dk ek·r G̃(k).

Covariance spectral density:

G̃(k) =
1kc≥κ(κ) η0ξ

d

1 + η1κ2ξ2 + κ4ξ4
, κ = ‖k‖, 1B(·) : indicator function,

Permissibility conditions (Bochner’s theorem) Hristopulos [2003]:

For any kc :

η0 > 0, ξ > 0, η1 > −2

For finite kc :

η1 < −2, if kcξ <
√
|η1|−∆

2

∆ =
√
η2

1 − 4
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Covariance Spectral Density

SPD: Positive stiffness SPD: Negative stiffness
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Covariance functions

Covariance (d = 2): Positive
stiffness

Covariance (d = 2): Negative
stiffness
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Spectral Representation of Covariance
Functions

Spectral Representation (Inverse Hankel transform)

For isotropic covariance functions the following holds: [Schoenberg,
1938]

G(r) =
η0 ξ

d ‖r‖
(2π‖r‖)d/2

∫ kc

0
dκ

κd/2Jd/2−1(κ‖r‖)
1 + η1(κξ)2 + (κξ)4

Jd/2−1(‖r‖): Bessel function of the first kind of order d/2− 1

For kc →∞ (limit of infinite UV cutoff) the spectral integral exists for
d ≤ 3
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SSRF Covariance function d = 1

Unlimited band, kc →∞ [Hristopulos and Elogne, 2007]

G(h) =
η0

4
e−hβ2

[
cos(hβ1)

β2
+

sin(hβ1)

β1

]
, |η1| < 2

G(h) = η0
(1 + h)

4 eh , η1 = 2

G(h) =
η0

2 ∆

(e−hω1

ω1
− e−hω2

ω2

)
, η1 > 2

h = |r |/ξ : normalized lag,

β1,2 =
(
|2∓η1|

4

)1/2
, ω1,2 =

(
|η1∓∆|

2

)1/2
, ∆ = |η2

1 − 4|
1
2
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SSRF Covariance function d = 1
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SSRF Covariance function d = 2

Unlimited band, kc →∞ [Hristopulos, 2013]

G(h) =
η0 = [K0(h z+)]

π
√

4− η2
1

, |η1| < 2

G(h) =

(
η0 h
4π

)
K−1(h), η1 = 2

G(h) =
η0 [K0(h z+)− K0(h z−)]

2π
√
η2

1 − 4
, η1 > 2

h = ‖r‖/ξ, =: Imaginary part

z± =
√
−t∗±, t∗± =

(
−η1 ±

√
η2

1 − 4
)
/2

Kν(z): modified Bessel function of the second kind and order ν
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SSRF Covariance function d = 2
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SSRF Covariance function d = 3

Unlimited band, kc →∞ [Hristopulos and Elogne, 2007]

G(h) = η0
e−hβ2

∆

[
sin (hβ1)

h

]
, |η1| < 2

G(h) =
η0

4
e−h, η1 = 2

G(h) =
1

2 ∆

(
e−hω1 − e−hω2

h

)
, η1 > 2

h = ‖r‖/ξ,

β1,2 =
(
|2∓η1|

4

)1/2
, ω1,2 =

(
|η1∓∆|

2

)1/2
, ∆ = |η2

1 − 4|
1
2
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SSRF Covariance function d = 3
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FGC-SSRF Realizations d = 1

η1 = −1.999 η1 = −1
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FGC-SSRF Realizations d = 1

η1 = 0.15 η1 = 15
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FGC-SSRF Length Scales

FGC-SSRF covariance functions have non-linear dependence of
correlation scales on model parameters [Hristopulos and Žukovič, 2011]

Definitions

1 Integral range:

`c
.

=

[ ∫
dr G(r)

G(0)

]1/d

=Ad ξ

2 Correlation length:

rc
.

=

[∫
dr r2 G(r)∫
dr G(r)

]1/2

=

√√√√√
∣∣∣∣∣ d2G̃(k)/dk2

2G̃(k)

∣∣∣∣∣
k=0

=
√
|η1| ξ

FGC-SSRF Integral Range
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FGC-SSRF Length Scales

FGC-SSRF covariance functions have non-linear dependence of
correlation scales on model parameters [Hristopulos and Žukovič, 2011]

Definitions

1 Integral range:

`c
.

=

[ ∫
dr G(r)

G(0)

]1/d

=Ad ξ

2 Correlation length:

rc
.

=

[∫
dr r2 G(r)∫
dr G(r)

]1/2

=

√√√√√
∣∣∣∣∣ d2G̃(k)/dk2

2G̃(k)

∣∣∣∣∣
k=0

=
√
|η1| ξ

FGC-SSRF Integral Range
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Karhunen-Loève Expansions of SSRFs

Karhunen-Loève Theorem

1 A second-order φ(s) with continuous covariance covariance
G(s, s′) can be expanded on a closed and bounded domain D as:

φ(s) = mx(s) +
∞∑

m=1

√
λm cm ψm(s).

The convergence is uniform on D.

2 The λm and ψm(s) are respectively, eigenvalues and eigenfunctions
of the covariance operator, that satisfy the Fredholm integral
equation ∫

D
ds′G(s, s′)ψm(s′) = λm ψm(s′).

3 The cm are zero-mean, uncorrelated random variables, i.e,
E [cm] = 0 and E [cm cn] = δn,m, ∀n,m ∈ N.
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Karhunen-Loève Expansions of SSRFs

Simulations on Square Domain

Square lattice 100× 100, Modes used: 100× 100 wave-vectors

Pinned boundaries (no fluctuations)

SSRF eigenvalues

λm =
η0ξ

2

1 + η1ξ2 ‖km‖2 + ξ4 ‖km‖4 , km =

(
2πnm,1

L
,

2πnm,2

L

)T

SSRF K-L eigenfunctions

ψm(s1, s2) =
1
L

sin (km,1 s1) sin (km,2 s2) ,
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Karhunen-Loève Expansions of SSRFs

η0 = 2, η1 = −1.5, ξ = 5

η0 = 2, η1 = 0, ξ = 5

η0 = 2, η1 = 1.5, ξ = 5

η0 = 2, η1 = 15, ξ = 5
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Karhunen-Loève Expansions of SSRFs

SRRF Variance Evolution versus number of ordered eigenvalues
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Figure: SSRF standard deviation of K-L simulation at s0 = (25, 25) on
100× 100 square domain with pinned boundaries. SSRF parameters: η0 = 2,
ξ = 5 and η1 = (−1.5, 0, 1.5, 15)T .
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SSRF Inverse Covariance Kernel with
Ultraviolet Cutoff

Spectral integral of J̃S(‖k‖) = (η0ξ
d )−1 [1 + η1(ξ‖k‖)2 + c2(ξ‖k‖)4] ,

JS(r;θ) =
‖r‖

(2π‖r‖)d/2

∫ kc

0
d‖k‖ ‖k‖d/2Jd/2−1(‖k‖‖r‖) J̃S(‖k‖;θ),

Lommel functions

z2 d2w(z)

dz2
+ z

dw(z)

dz
+ (z2 − ν2) w(z) = zµ+1.

If µ− ν = 2l + 1 the following Lommel series terminates after l + 1 terms

Sµ,ν(z) = zµ−1
[

1−
(µ− 1)2 − ν2

z2
+

[(µ− 1)2 − ν2][(µ− 3)2 − ν2]

z4
− . . .

]
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SSRF Inverse Covariance Kernel with
Ultraviolet Cutoff

Theorem

In d ≥ 2, the SSRF inverse covariance kernel JS(z;θ) is given by means of the
following tripartite sum, where uc = kcξ, z = kc ‖r‖, and ν = d/2− 1

JS(z;θ) =
∑

l=0,1,2

gl (θ)

z2ν+2l+1

[
(2ν + 2l)Jν(z) Sν+2l,ν−1(z)− Jν−1(z) Sν+2l+1,ν(z)

]
,

g0(θ) =
kd

c

(2π)d/2η0 ξd
, g1(θ) = η1 u2

c g0(θ), g2(θ) = u4
c g0(θ),

The above equations define a positive semidefinite kernel function for η1 > −2. In
particular, the value at the origin is

JS(0;θ) =
g0(θ)

2ν+1 Γ(ν + 2)

[
1 + η1 u2

c

(
ν + 1
ν + 2

)
+ u4

c

(
ν + 1
ν + 3

)]
,
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SSRF Inverse Covariance Kernel with
Ultraviolet Cutoff

Normalized inverse SSRF covariance function vs d

SSRF parameters are η0 = 1, ξ = 1, η1 = 2, and kc = 2.
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SSRF Inverse Covariance Kernel with
Ultraviolet Cutoff

Integral range `c

Dependence on d for different η1 and
ξ = 2
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Fast optimal interpolation

Theorem

Let Xs = (X1, . . . ,XN)T a vector of measurements at sn, n = 1, . . . ,N,
and Xp = XN+1 the SSRF value at unmeasured location sN+1. Assume
that the data are samples of the SSRF with the energy functional

Hfgc[Xs;p;θ] =
1
2

XT
s;p J(θ) Xs;p,

where Xs;p = (X1, . . . ,XN ,Xp)T , and J(θ) is the inverse covariance
(precision) matrix. The mode estimate X̂p which maximizes the joint pdf
is given by

X̂p = −
JT

p;s(θ) Xs

Jp;p(θ)
= −

N∑
i=1

Jp,i (θ) Xi

Jp;p(θ)
. (1)

28 / 35



SSRF
Covariance

Models

Motivation

Local
interaction
models

SSRF
Covariance
Functions

KL
Expansions

Inverse
Covariance
Kernel

Fast
interpolation

Conclusions

References

Grid Approximation of Continuum SSRF

JS(rn;θ) = c0

1− η1

 d∑
i=1

ξ2

a2
i

D2
n,i

+

 d∑
i=1

d∑
j=1

ξ4

a2
i a2

j
D2

n,i D
2
n,j

 δ(rn).

On a grid with lattice step a→ 0: δ(si − sj )→ δi,j/vc , vc = ad .

δn,i [f (rn)] = f
(

rn +
ai

2
êi

)
− f
(

rn −
ai

2
êi

)
, i = 1, . . . , d .

δ2
n,i [f (rn)] = f (rn + ai êi ) + f (rn − ai êi )− 2f (rn) .

Dn,i is related to the centered difference operator by [Hildebrand, 1974]

ai Dn,i = 2 sinh−1
(
δn,i

2

)
.

Taylor series expansions of D2
n,i and D4

n,i in terms of δn,i

a2
i D2

n,i =δ2
n,i −

δ4
n,i

12
+
δ6

n,i

90
−
δ8

n,i

560
+

δ10
n,i

3150
−

δ12
n,i

16632
+ O

(
δ14

n,i

)
a4

i D4
n,i =δ4

n,i −
δ6

n,i

6
+

7δ8
n,i

240
−

41δ10
n,i

7560
+

479δ12
n,i

453600
+ O

(
δ14

n,i

)
.
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Inverse SSRF Covariance Kernel on
Hypercubic Grid

J(rn;θ) = c0

[
δn,0 − η1 ξ

2 S(rn) + ξ4 C(rn)
]
,

where the square gradient, S(rn), and square curvature, C(rn), are given by

S(rn) =
d∑

i=1

D2
n,i , C(rn) =

d∑
i=1

D4
n,i +

d∑
i=1

d∑
j=1

D2
n,i D2

n,j .

Truncating S(rn) and C(rn) at order 2p = 12, it follows that

S(12)(rn) =
d∑

i=1

δ
2
n,i −

δ4
n,i

12
+
δ6

n,i

90
−
δ8

n,i

560
+
δ10

n,i

3150
−

δ12
n,i

16632
,

C(12)(rn) =
d∑

i=1

δ4
n,i −

δ6
n,i

6
+

7 δ8
n,i

240
−

41 δ10
n,i

7560
+

479 δ12
n,i

453600

 +
d∑

i=1

d∑
j=1

δ2
n,iδ

2
n,j −

δ2
n,i δ

4
n,j

6

+
δ2

n,iδ
6
n,j

45
−
δ2

n,iδ
8
n,j

280
+
δ2

n,iδ
10
n,j

1575
+
δ4

n,i δ
4
n,j

144
−
δ4

n,i δ
6
n,j

540
+
δ4

n,i δ
8
n,j

3360
+
δ6

n,i δ
6
n,j

8100

 .
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Inverse SSRF Covariance Kernel on
Hypercubic Grid

Table: Central finite differences of orders 2k , k = 1, . . . ,6 on
hypercubic grid with uniform step a = 1 in each orthogonal
direction i = 1, . . . ,d . FD stands for finite difference. The fn
denotes any lattice function.

FD Expressions

δ2
n,i fn = fn+êi

+ fn−êi
− 2fn

δ4
n,i fn = fn+2êi

+ fn−2êi
− 4fn+êi

− 4fn−êi
+ 6fn

δ6
n,i fn = fn+3êi

+ fn−3êi
− 6fn+2êi

− 6fn−2êi
+ 15fn+êi

+ 15fn−êi
− 20fn

δ8
n,i fn = fn+4êi

+ fn−4êi
− 8fn+3êi

− 8fn−3êi
+ 28fn+2êi

+ 28fn−2êi
− 56fn+êi

−56fn−êi
+ 70fn

δ10
n,i fn = fni +5,nj

+ fni−5,nj
− 10fn+4êi

− 10fn−4êi
+ 45fn+3êi

+ 45fn−3êi
− 120fn+2êi

−120fn−2êi
+ 210fn+êi

+ 210fn−êi
− 252fn

δ12
n,i fn = fni +6,nj

+ fni−6,nj
− 12fni +5,nj

− 12fni−5,nj
+ 66fn+4êi

+ 66fn−4êi
− 220fn+3êi

−220fn−3êi
+ 495fn+2êi

+ 495fn−2êi
− 792fn+êi

− 792fn−êi
+ 924fn
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Inverse SSRF Covariance Kernel on
Hypercubic Grid

Numerical Example
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Details

Inverse SSRF covariance
kernel G−1(L/2, k),
k = 1, . . . , L evaluated by
inverting the d = 1
continuum covariance
(circles) versus the
centered FD inverse kernel
expressions J(2p)(L/2, k),
p = 3, 4, 5, 6 of orders six
(crosses), eight
(diamonds), ten (triangles),
and twelve (squares).
An 1D chain of length
L = 20 (a = 1) is used.
SSRF parameters:
η0 = 10, η1 = 2, and
ξ = 10. The covariance is
given by
G(h) = η0(1 + h)e−h/4,
where h = |r|/ξ,
[Hristopulos and Elogne,
2007].
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Conclusions and Future Directions

We presented three-parameter, positive-definite,
isotropic covariance models based on local interaction
“energy” (Spartan) functionals
SSRF models lead to fast (linear complexity)
interpolation on regular grids and on unstructured grids
as well [Hristopulos and Elogne, 2009]
A new family of four-parameter, positive-definite kernels
valid in d ≥ 2 based on Lommel functions is proposed
Continuing research involves extensions to: spatial
non-homogeneity, space-time correlations, and
non-Gaussian dependence
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